计算机科学
合成孔径雷达
卷积神经网络
人工智能
特征提取
方向(向量空间)
模式识别(心理学)
计算机视觉
人工神经网络
非线性系统
数学
物理
几何学
量子力学
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Saied Pirasteh,Kinh Bac Dang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-13
被引量:16
标识
DOI:10.1109/tgrs.2024.3352150
摘要
The shipping industry is pivotal in transporting approximately 90% of the world’s goods, and it is characterized by evolving trends in vessel sizes and energy-efficient designs. Continuous advancements in technology for ship management have focused on detecting and analyzing anomalous and illicit vessels. In this study, we introduce ShipGeoNet, a model designed to extract geometric features from ships captured in Sentinel-1 synthetic aperture radar (SAR) images. ShipGeoNet employs a combination of Convolutional Neural Networks (CNN) and nonlinear regression techniques to extract various geometric features of ships from SAR imagery. The model follows a two-step approach. First, it utilizes a modified Mask R-CNN architecture and the ViTDet model to accurately detect ships, generating high-quality object masks for precise localization. In the subsequent step, a regression model utilizes the detected ship masks to extract key geometric attributes, including length, width, and orientation. The proposed nonlinear regression techniques are specifically crafted to address the complex nonlinear deformations inherent in SAR images. Through extensive experiments on a large-scale SAR dataset, ShipGeoNet demonstrates its efficiency and accuracy in ship size extraction and matching, outperforming existing methods. Developing the ShipGeoNet model opens up possibilities for future applications in maritime surveillance, navigation, and environmental monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI