ShipGeoNet: SAR Image-Based Geometric Feature Extraction of Ships Using Convolutional Neural Networks

计算机科学 合成孔径雷达 卷积神经网络 人工智能 特征提取 模式识别(心理学) 图像(数学) 特征(语言学) 萃取(化学) 计算机视觉 遥感 地质学 语言学 哲学 化学 色谱法
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Saied Pirasteh,Kinh Bac Dang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:22
标识
DOI:10.1109/tgrs.2024.3352150
摘要

The shipping industry is pivotal in transporting approximately 90% of the world's goods, and it is characterized by evolving trends in vessel sizes and energy-efficient designs. Continuous advancements in technology for ship management have focused on detecting and analyzing anomalous and illicit vessels. In this study, we introduce ShipGeoNet, a model designed to extract geometric features from ships captured in Sentinel-1 synthetic aperture radar (SAR) images. ShipGeoNet employs a combination of convolutional neural networks (CNNs) and nonlinear regression techniques to extract various geometric features of ships from SAR imagery. The model follows a two-step approach. First, it utilizes a modified Mask R-CNN architecture and the ViTDet model to accurately detect ships, generating high-quality object masks for precise localization. In the subsequent step, a regression model utilizes the detected ship masks to extract key geometric attributes, including length, width, and orientation. The proposed nonlinear regression techniques are specifically crafted to address the complex nonlinear deformations inherent in SAR images. Through extensive experiments on a large-scale SAR dataset, ShipGeoNet demonstrates its efficiency and accuracy in ship size extraction and matching, outperforming existing methods. Developing the ShipGeoNet model opens up possibilities for future applications in maritime surveillance, navigation, and environmental monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿绿发布了新的文献求助30
1秒前
是why耶发布了新的文献求助10
1秒前
青云完成签到,获得积分10
1秒前
我是老大应助刘君卓采纳,获得10
1秒前
1秒前
科研通AI2S应助TUTU采纳,获得10
1秒前
凌千颂完成签到 ,获得积分20
1秒前
2秒前
人人夸我美食家完成签到,获得积分10
2秒前
ding应助ddd采纳,获得10
3秒前
3秒前
快乐大侠完成签到,获得积分10
4秒前
静书完成签到,获得积分10
5秒前
充电宝应助hn_zhx采纳,获得10
6秒前
打打应助懦弱的新梅采纳,获得10
7秒前
7秒前
慕青应助人人夸我美食家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
zzz发布了新的文献求助10
9秒前
CY88完成签到,获得积分10
9秒前
10秒前
10秒前
小蘑菇应助yang采纳,获得10
10秒前
wenwenzi关注了科研通微信公众号
10秒前
keke完成签到,获得积分10
11秒前
CY88发布了新的文献求助10
12秒前
文艺过客发布了新的文献求助10
12秒前
王饱饱发布了新的文献求助10
12秒前
传奇3应助Stefan采纳,获得30
12秒前
KIKI完成签到,获得积分10
13秒前
科研通AI6应助yiyi采纳,获得10
13秒前
orixero应助呆萌雪晴采纳,获得10
14秒前
14秒前
hdy331完成签到,获得积分0
14秒前
坚定背包完成签到,获得积分10
14秒前
14秒前
Hont完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548