ShipGeoNet: SAR Image-Based Geometric Feature Extraction of Ships Using Convolutional Neural Networks

计算机科学 合成孔径雷达 卷积神经网络 人工智能 特征提取 模式识别(心理学) 图像(数学) 特征(语言学) 萃取(化学) 计算机视觉 遥感 地质学 语言学 哲学 化学 色谱法
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Saied Pirasteh,Kinh Bac Dang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:22
标识
DOI:10.1109/tgrs.2024.3352150
摘要

The shipping industry is pivotal in transporting approximately 90% of the world's goods, and it is characterized by evolving trends in vessel sizes and energy-efficient designs. Continuous advancements in technology for ship management have focused on detecting and analyzing anomalous and illicit vessels. In this study, we introduce ShipGeoNet, a model designed to extract geometric features from ships captured in Sentinel-1 synthetic aperture radar (SAR) images. ShipGeoNet employs a combination of convolutional neural networks (CNNs) and nonlinear regression techniques to extract various geometric features of ships from SAR imagery. The model follows a two-step approach. First, it utilizes a modified Mask R-CNN architecture and the ViTDet model to accurately detect ships, generating high-quality object masks for precise localization. In the subsequent step, a regression model utilizes the detected ship masks to extract key geometric attributes, including length, width, and orientation. The proposed nonlinear regression techniques are specifically crafted to address the complex nonlinear deformations inherent in SAR images. Through extensive experiments on a large-scale SAR dataset, ShipGeoNet demonstrates its efficiency and accuracy in ship size extraction and matching, outperforming existing methods. Developing the ShipGeoNet model opens up possibilities for future applications in maritime surveillance, navigation, and environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狂野萤完成签到,获得积分10
1秒前
阳光的博超完成签到,获得积分20
1秒前
1秒前
Cx330发布了新的文献求助10
1秒前
Lin完成签到,获得积分10
3秒前
淡淡的白羊完成签到 ,获得积分10
4秒前
独特听芹完成签到,获得积分10
4秒前
游庆敏发布了新的文献求助30
4秒前
风轩轩发布了新的文献求助10
6秒前
mnys关注了科研通微信公众号
6秒前
木木啊发布了新的文献求助10
6秒前
hilm举报洋子求助涉嫌违规
6秒前
落寞的书易完成签到 ,获得积分10
7秒前
momo发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
阳光的博超关注了科研通微信公众号
10秒前
忧虑的代容完成签到,获得积分10
10秒前
Zhidong Wei完成签到,获得积分10
12秒前
12秒前
13秒前
muyassar完成签到,获得积分10
14秒前
dlgd发布了新的文献求助10
14秒前
Guko发布了新的文献求助10
15秒前
Zzzzzzz完成签到,获得积分10
15秒前
明月发布了新的文献求助10
16秒前
17秒前
17秒前
Lynn发布了新的文献求助10
18秒前
momo完成签到,获得积分20
18秒前
20秒前
轻松板栗发布了新的文献求助10
20秒前
20秒前
dlgd完成签到,获得积分10
21秒前
友好绿草完成签到,获得积分10
21秒前
Yaaaaaa给Yaaaaaa的求助进行了留言
22秒前
hilm给洋子的求助进行了留言
23秒前
舒适的洋葱给舒适的洋葱的求助进行了留言
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336