DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 操作系统 哲学
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Akim应助nadeem采纳,获得10
3秒前
万能图书馆应助xiazhishang采纳,获得10
3秒前
难过以晴发布了新的文献求助10
4秒前
汉堡包应助栖木采纳,获得10
5秒前
完美世界应助sln采纳,获得10
5秒前
香蕉觅云应助LL采纳,获得10
5秒前
LUNE完成签到 ,获得积分10
6秒前
7秒前
牧歌发布了新的文献求助10
7秒前
7秒前
紧张的冥完成签到,获得积分10
7秒前
宁幼萱发布了新的文献求助10
8秒前
饱满觅露发布了新的文献求助10
8秒前
9秒前
道元完成签到,获得积分10
9秒前
qianqian完成签到,获得积分10
9秒前
10秒前
勤奋的寒风完成签到,获得积分10
10秒前
浮游应助曹文帅采纳,获得10
11秒前
眯眯眼的鞋垫完成签到,获得积分10
11秒前
泥巴完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
小俊发布了新的文献求助10
12秒前
13秒前
HfO2AND发布了新的文献求助10
14秒前
关人土发布了新的文献求助10
14秒前
14秒前
小金鱼完成签到,获得积分10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
老阎应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得40
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968837
求助须知:如何正确求助?哪些是违规求助? 4226025
关于积分的说明 13161755
捐赠科研通 4013212
什么是DOI,文献DOI怎么找? 2195911
邀请新用户注册赠送积分活动 1209356
关于科研通互助平台的介绍 1123397