已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 哲学 操作系统
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
KK完成签到 ,获得积分10
刚刚
1秒前
么么么发布了新的文献求助10
3秒前
典雅的萤发布了新的文献求助10
5秒前
李健的小迷弟应助小冰采纳,获得10
6秒前
大个应助一只西瓜茶采纳,获得10
6秒前
郭浩峰完成签到,获得积分10
7秒前
ccc完成签到 ,获得积分10
7秒前
希哩哩完成签到 ,获得积分10
7秒前
9秒前
小羊咩完成签到 ,获得积分0
10秒前
10秒前
三岁完成签到 ,获得积分10
10秒前
收集快乐完成签到 ,获得积分10
13秒前
蜗牛123发布了新的文献求助10
14秒前
小冰完成签到,获得积分10
15秒前
16秒前
大力夜雪发布了新的文献求助10
19秒前
lllable完成签到,获得积分10
20秒前
顾良发布了新的文献求助20
21秒前
wrr完成签到,获得积分10
23秒前
SOBER刘晗完成签到 ,获得积分20
24秒前
斯文麦片完成签到 ,获得积分10
24秒前
LiShan完成签到 ,获得积分10
24秒前
健壮的月光完成签到,获得积分10
25秒前
zzzrrr完成签到 ,获得积分10
29秒前
29秒前
科研人完成签到,获得积分10
29秒前
Ee完成签到,获得积分10
30秒前
大胆的琦完成签到,获得积分10
30秒前
33秒前
么么么发布了新的文献求助10
34秒前
piupiu完成签到,获得积分10
34秒前
aprise完成签到 ,获得积分10
34秒前
典雅的萤完成签到 ,获得积分10
36秒前
brwen完成签到,获得积分10
38秒前
cosmos完成签到,获得积分10
38秒前
38秒前
浮游应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497938
求助须知:如何正确求助?哪些是违规求助? 4595334
关于积分的说明 14448871
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481306
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438169