已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 操作系统 哲学
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点点完成签到 ,获得积分10
刚刚
清秀小霸王完成签到,获得积分10
刚刚
1秒前
丁昂霄完成签到 ,获得积分10
2秒前
嘁嘁嘁完成签到,获得积分10
3秒前
HH完成签到,获得积分10
5秒前
雅士白农学家完成签到,获得积分10
5秒前
兜兜风gf完成签到 ,获得积分10
6秒前
称心的冰安完成签到,获得积分10
6秒前
yinlao完成签到,获得积分10
7秒前
Vintoe完成签到 ,获得积分10
7秒前
听曲散步完成签到,获得积分10
7秒前
7秒前
明亮的幻灵完成签到,获得积分10
9秒前
lijunliang完成签到 ,获得积分10
9秒前
七号在野闪闪完成签到 ,获得积分10
10秒前
rayc应助卡皮巴拉桑采纳,获得10
10秒前
所所应助实物图采纳,获得10
11秒前
晨晨完成签到 ,获得积分10
11秒前
Carole完成签到 ,获得积分10
12秒前
Akim应助雅士白农学家采纳,获得10
12秒前
韦鑫龙完成签到,获得积分10
12秒前
12秒前
半斤完成签到 ,获得积分10
13秒前
15秒前
nav完成签到 ,获得积分10
15秒前
Tohka完成签到 ,获得积分10
15秒前
RRR232完成签到 ,获得积分10
15秒前
16秒前
大方听白完成签到 ,获得积分10
16秒前
123完成签到 ,获得积分10
18秒前
聪聪great发布了新的文献求助10
19秒前
01259完成签到 ,获得积分10
20秒前
嘁嘁嘁发布了新的文献求助10
20秒前
21秒前
azon完成签到 ,获得积分10
22秒前
韦老虎完成签到,获得积分20
23秒前
聪聪great完成签到,获得积分20
23秒前
24秒前
徐zhipei完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504