DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 操作系统 哲学
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KevinT发布了新的文献求助10
1秒前
家夜雪完成签到,获得积分10
1秒前
4秒前
Criminology34应助chenping_an采纳,获得10
5秒前
5秒前
SamSimple发布了新的文献求助10
5秒前
5秒前
胡萝卜发布了新的文献求助10
7秒前
洋洋发布了新的文献求助30
8秒前
cherry完成签到 ,获得积分10
11秒前
王贵康发布了新的文献求助30
12秒前
华仔应助洋洋采纳,获得10
13秒前
orixero应助LL采纳,获得10
14秒前
15秒前
含含含发布了新的文献求助20
17秒前
Chan0427完成签到,获得积分10
18秒前
19秒前
丘比特应助kkkkkkkkk采纳,获得10
19秒前
20秒前
小黄不熬夜完成签到 ,获得积分10
20秒前
科研通AI6应助贪玩半仙采纳,获得10
20秒前
章鱼小丸子完成签到,获得积分10
20秒前
21秒前
23秒前
lslslslsllss发布了新的文献求助20
23秒前
唐唐发布了新的文献求助10
24秒前
Www发布了新的文献求助10
26秒前
26秒前
王贵康完成签到 ,获得积分20
26秒前
ooo完成签到 ,获得积分10
27秒前
无情的绮彤完成签到,获得积分10
27秒前
28秒前
SamSimple完成签到,获得积分10
28秒前
29秒前
30秒前
eternal完成签到,获得积分10
31秒前
福尔摩环发布了新的文献求助10
31秒前
GZY发布了新的文献求助10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933