DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 操作系统 哲学
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小南发布了新的文献求助10
刚刚
1秒前
1秒前
含蓄的鹤发布了新的文献求助20
2秒前
yuyuyuan完成签到,获得积分10
3秒前
爆米花应助木心长采纳,获得10
3秒前
娜行完成签到 ,获得积分10
3秒前
caohuijun发布了新的文献求助10
4秒前
Akim应助JasonSun采纳,获得30
6秒前
10秒前
孤独梦安完成签到 ,获得积分10
10秒前
英俊完成签到,获得积分10
10秒前
乐乐应助风格化橙采纳,获得10
11秒前
喜悦发卡完成签到,获得积分10
12秒前
活力的泥猴桃完成签到 ,获得积分10
13秒前
14秒前
xinxinwen完成签到,获得积分10
14秒前
15秒前
15秒前
EMMA发布了新的文献求助10
16秒前
Cc关闭了Cc文献求助
16秒前
TTRO完成签到,获得积分10
16秒前
m_seek完成签到,获得积分10
17秒前
木心长发布了新的文献求助10
18秒前
18秒前
土二给土二的求助进行了留言
18秒前
19秒前
在水一方应助十五采纳,获得10
21秒前
Yzh完成签到,获得积分10
21秒前
smile发布了新的文献求助10
22秒前
Michael Zhang完成签到 ,获得积分10
22秒前
邓年念发布了新的文献求助10
23秒前
云那边的山发布了新的文献求助300
24秒前
英姑应助EMMA采纳,获得10
25秒前
浮游应助xxx采纳,获得10
26秒前
深情安青应助小王采纳,获得30
26秒前
AIKaikai发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452