DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 可解释性 全色胶片 特征提取 编码器 多光谱图像 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 哲学 操作系统
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123589-123589 被引量:7
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助薛定谔的猫采纳,获得10
2秒前
医科大准博士生完成签到,获得积分10
2秒前
彭于晏应助背后如雪采纳,获得10
2秒前
情怀应助丹丹采纳,获得10
4秒前
5秒前
6秒前
6秒前
9秒前
11秒前
李健的小迷弟应助好滴捏采纳,获得10
11秒前
11秒前
任性迎南发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
Ava应助优美的钢铁侠采纳,获得10
15秒前
狂野未来发布了新的文献求助10
16秒前
16秒前
小白白发布了新的文献求助30
18秒前
肆_完成签到 ,获得积分10
18秒前
超人完成签到 ,获得积分20
18秒前
19秒前
CipherSage应助花椒小透明采纳,获得10
20秒前
zhangnan完成签到,获得积分10
20秒前
花椒泡茶发布了新的文献求助10
21秒前
21秒前
22秒前
得失心的诅咒完成签到 ,获得积分10
22秒前
幸福大白发布了新的文献求助10
23秒前
tovfix完成签到,获得积分10
23秒前
felix发布了新的文献求助10
23秒前
遗憾发布了新的文献求助10
25秒前
26秒前
好滴捏发布了新的文献求助10
26秒前
26秒前
27秒前
29秒前
29秒前
搜集达人应助hushidi采纳,获得10
29秒前
蛋黄派完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712