DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 图像(数学) 深度学习 计算机视觉
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123589-123589
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助温水采纳,获得10
刚刚
Li656943234完成签到,获得积分10
1秒前
李健应助清爽语柳采纳,获得10
3秒前
FZUer完成签到,获得积分10
3秒前
3秒前
淡淡无色发布了新的文献求助10
4秒前
自然天思发布了新的文献求助10
5秒前
林夕完成签到,获得积分10
5秒前
6秒前
7秒前
充电宝应助CZLhaust采纳,获得10
7秒前
驱散发布了新的文献求助10
8秒前
Li656943234发布了新的文献求助10
8秒前
9秒前
希望天下0贩的0应助Nariy采纳,获得10
10秒前
动听乐珍发布了新的文献求助10
11秒前
优秀不愁发布了新的文献求助10
11秒前
哈哈发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
打工仔完成签到 ,获得积分10
13秒前
晨曦完成签到,获得积分10
13秒前
13秒前
神勇乘云发布了新的文献求助30
14秒前
Ava应助吴博士采纳,获得10
14秒前
舒适听兰完成签到,获得积分20
14秒前
15秒前
15秒前
16秒前
16秒前
归零儿完成签到,获得积分10
17秒前
17秒前
17秒前
格格完成签到,获得积分10
17秒前
wanci应助moumou采纳,获得30
17秒前
17秒前
18秒前
孟晴天发布了新的文献求助10
18秒前
落枫发布了新的文献求助10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246076
求助须知:如何正确求助?哪些是违规求助? 2889679
关于积分的说明 8259727
捐赠科研通 2558094
什么是DOI,文献DOI怎么找? 1387004
科研通“疑难数据库(出版商)”最低求助积分说明 650362
邀请新用户注册赠送积分活动 626793