Bidirectional Design for SPR-Photonic Crystal Fiber Magnetic Field Sensor Based on Deep Learning

计算机科学 有限元法 人工神经网络 电子工程 趋同(经济学) 灵敏度(控制系统) 光子晶体光纤 光纤 工程类 人工智能 电信 经济增长 结构工程 经济
作者
Chang Tang,Dan Yang,Tonglei Cheng,Songze Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 4091-4101 被引量:2
标识
DOI:10.1109/jsen.2023.3344121
摘要

Optical magnetic field sensors have gained prominence due to their compact size, high sensitivity, and broad dynamic range. Photonic crystal fiber (PCF) sensors have emerged as a significant role in optical sensing. Traditional numerical design methods of PCF such as finite element method (FEM) are computationally demanding and often restrict the design space due to iterative trial-and-error processes. In this work, a bidirectional design approach using a deep learning model based on Deep Neural Networks (DNNs) and Augmented Grey Wolf Optimizer (AGWO) is proposed for surface plasmon resonance (SPR)-based PCF magnetic field sensor. This bidirectional design method contains forward modeling and inverse design. The forward modeling predicts the optical responses of sensor structures accurately in 55.99 milliseconds with an R-squared value of 0.9942. The inverse design approach, with a tandem network configuration for addressing the non-uniqueness challenge in inverse design, identifies the sensor design aligning with desired optical responses in less than 0.5 seconds. In addition, AGWO is utilized to further enhance the accuracy and convergence ability of DNN. The key results indicate that our proposed approach reduces computational effort and enhances design effectiveness in PCF sensor design, which can also offer an alternative method for the design of various optical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting完成签到 ,获得积分10
刚刚
ccc发布了新的文献求助10
1秒前
小米发布了新的文献求助10
3秒前
zhang完成签到 ,获得积分10
4秒前
5秒前
天天快乐应助南风不竞采纳,获得10
6秒前
脑洞疼应助jing采纳,获得10
6秒前
cocolu应助afrex采纳,获得30
7秒前
8秒前
Akim应助歪比巴卜采纳,获得10
10秒前
10秒前
DDJoy完成签到,获得积分10
11秒前
我是老大应助现代的丸子采纳,获得10
13秒前
Nemo完成签到,获得积分10
13秒前
yangyang发布了新的文献求助10
15秒前
sound发布了新的文献求助10
15秒前
田様应助小米采纳,获得10
16秒前
Akim应助yang采纳,获得10
16秒前
ccc完成签到,获得积分10
17秒前
17秒前
伶俐剑心发布了新的文献求助10
19秒前
19秒前
00爱学习发布了新的文献求助10
19秒前
酷波er应助tooty采纳,获得10
20秒前
汉堡包应助悦耳听芹采纳,获得10
23秒前
zhu完成签到,获得积分10
23秒前
Lucia完成签到,获得积分10
24秒前
25秒前
NexusExplorer应助shy采纳,获得10
27秒前
Lucia发布了新的文献求助10
28秒前
JackRen发布了新的文献求助10
28秒前
28秒前
Polymer72应助木子李采纳,获得10
29秒前
993xd完成签到 ,获得积分10
30秒前
坚定的可愁完成签到,获得积分10
30秒前
南风不竞发布了新的文献求助10
30秒前
32秒前
34秒前
梓泽丘墟完成签到,获得积分0
35秒前
vincentbioinfo完成签到,获得积分10
35秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343057
求助须知:如何正确求助?哪些是违规求助? 2970087
关于积分的说明 8642705
捐赠科研通 2650072
什么是DOI,文献DOI怎么找? 1451108
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407