INDIVIDUAL TREE-BASED FOREST SPECIES DIVERSITY ESTIMATION USING UAV-BORNE HYPERSPECTRAL AND LIDAR DATA

高光谱成像 物种丰富度 聚类分析 多样性指数 生物多样性 激光雷达 公制(单位) 树(集合论) 遥感 计算机科学 环境科学 地理 生态学 数学 人工智能 生物 工程类 数学分析 运营管理
作者
Zhaoju Zheng,Xiangchun Li,Chen Xu,Peng Zhao,Jianping Chen,Jie Wu,Xue Qiang Zhao,Xihan Mu,Dan Zhao,Yuan Zeng
出处
期刊:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 卷期号:XLVIII-1/W2-2023: 1929-1934
标识
DOI:10.5194/isprs-archives-xlviii-1-w2-2023-1929-2023
摘要

Abstract. Forest biodiversity is essential in maintaining ecosystem functions and services. Recently, unmanned aerial vehicle (UAV) remote sensing technology has emerged as a cost-effective and flexible tool for biodiversity monitoring. In this study, we compared the optimal clustering algorithm, classification method (spectral angle mapper, SAM), spectral diversity metric and structural heterogeneity index for forest species diversity estimation in two complex subtropical forests, Mazongling (MZL) and Gonggashan (GGS) National Nature Forest Reserves in China, using UAV-borne hyperspectral and LiDAR data. The results showed that the SAM classification method performed better with higher values of R2 than the clustering algorithm for predicting both species richness (MZL: 0.62 > 0.46 and GGS: 0.55 > 0.46) and Shannon-Wiener index (MZL: 0.64 > 0.58 and GGS: 0.52 > 0.47), while the optimal clustering algorithm had the highest prediction accuracy for the Simpson index, followed by the SAM classification method, spectral diversity metric and structural heterogeneity index (MZL: 0.83>0.44>0.31>0.12, GGS: 0.62>0.44>0.38>0.00). Our study indicated that the SAM classification method had the advantage of identifying rare species and estimating species richness, while the clustering method could capture forest diversity patterns rapidly without distinguishing the specific tree species and predict the Simpson index more accurately. Overall, both clustering and classification methods exhibited superior performance compared to spectral or structural diversity indices. Our findings highlight the applicability of UAV remote sensing in monitoring forest species diversity in complex subtropical forests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助jojo144采纳,获得10
刚刚
害羞聋五完成签到,获得积分10
1秒前
1秒前
orixero应助三十六采纳,获得10
1秒前
小蘑菇应助生动丹珍采纳,获得10
1秒前
时2完成签到,获得积分10
1秒前
1秒前
1秒前
大个应助Wangdx采纳,获得10
2秒前
柒月完成签到 ,获得积分10
2秒前
2秒前
2秒前
任性雍发布了新的文献求助10
3秒前
3秒前
尹小末发布了新的文献求助10
4秒前
4秒前
顾矜应助风中的小松鼠采纳,获得10
4秒前
MitsubaAoki完成签到,获得积分10
5秒前
田様应助幽默厉采纳,获得10
5秒前
116发布了新的文献求助10
6秒前
mira完成签到,获得积分10
6秒前
彼得应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Zx_1993应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
F_echo应助科研通管家采纳,获得20
7秒前
凝眸处应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
彼得应助科研通管家采纳,获得10
7秒前
日照金峰发布了新的文献求助10
7秒前
7秒前
wangguoxi应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887