Hypernetwork-Based Physics-Driven Personalized Federated Learning for CT Imaging

计算机科学 超参数 数据共享 领域(数学分析) 人工智能 深度学习 协议(科学) 机器学习 数据科学 医学物理学 医学 数学 数学分析 病理 替代医学
作者
Ziyuan Yang,Wenjun Xia,Zexin Lu,Ying-Yu Chen,Xiaoxiao Li,Yi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3136-3150 被引量:8
标识
DOI:10.1109/tnnls.2023.3338867
摘要

In clinical practice, computed tomography (CT) is an important noninvasive inspection technology to provide patients' anatomical information. However, its potential radiation risk is an unavoidable problem that raises people's concerns. Recently, deep learning (DL)-based methods have achieved promising results in CT reconstruction, but these methods usually require the centralized collection of large amounts of data for training from specific scanning protocols, which leads to serious domain shift and privacy concerns. To relieve these problems, in this article, we propose a hypernetwork-based physics-driven personalized federated learning method (HyperFed) for CT imaging. The basic assumption of the proposed HyperFed is that the optimization problem for each domain can be divided into two subproblems: local data adaption and global CT imaging problems, which are implemented by an institution-specific physics-driven hypernetwork and a global-sharing imaging network, respectively. Learning stable and effective invariant features from different data distributions is the main purpose of global-sharing imaging network. Inspired by the physical process of CT imaging, we carefully design physics-driven hypernetwork for each domain to obtain hyperparameters from specific physical scanning protocol to condition the global-sharing imaging network, so that we can achieve personalized local CT reconstruction. Experiments show that HyperFed achieves competitive performance in comparison with several other state-of-the-art methods. It is believed as a promising direction to improve CT imaging quality and personalize the needs of different institutions or scanners without data sharing. Related codes have been released at https://github.com/Zi-YuanYang/HyperFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
看着过得去完成签到,获得积分10
刚刚
一只杨发布了新的文献求助10
1秒前
lily2025完成签到,获得积分10
1秒前
詹鸿锐发布了新的文献求助10
1秒前
2秒前
Willow完成签到,获得积分10
2秒前
YNN发布了新的文献求助10
2秒前
3秒前
科研通AI5应助王冠颖采纳,获得10
3秒前
5秒前
打我呀发布了新的文献求助10
5秒前
浅陌亦汐完成签到,获得积分10
5秒前
9秒前
zyy123888发布了新的文献求助10
9秒前
柠檬九分酸完成签到,获得积分10
10秒前
10秒前
14秒前
阿达应助msl2023采纳,获得10
15秒前
loka完成签到,获得积分10
16秒前
打我呀完成签到,获得积分20
17秒前
yuanqi完成签到,获得积分10
17秒前
张小馨完成签到 ,获得积分10
18秒前
18秒前
mgg完成签到,获得积分10
20秒前
伊酒应助华贞采纳,获得10
21秒前
lucky应助一只杨采纳,获得10
21秒前
turui完成签到 ,获得积分10
23秒前
mcnt应助msl2023采纳,获得10
25秒前
bhkwxdxy完成签到,获得积分10
25秒前
共享精神应助火星上冰绿采纳,获得10
26秒前
26秒前
123完成签到,获得积分10
29秒前
30秒前
王冠颖完成签到,获得积分10
33秒前
34秒前
35秒前
八颗牙齿发布了新的文献求助10
35秒前
msl2023完成签到,获得积分10
35秒前
Till完成签到 ,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731