电化学
钠
阴极
离子
电导率
结构稳定性
材料科学
离子键合
化学工程
复合数
离子电导率
化学
复合材料
冶金
电极
工程类
物理化学
有机化学
电解质
结构工程
作者
Yian Wang,Wenbin Fei,Xiaoping Zhang,Mengting Deng,Shengxing Lu,Jiuxiang Zhang,Kexin Rao,Yu Quan Yuan,Yulei Sui,Ling Wu
标识
DOI:10.1016/j.jcis.2024.03.036
摘要
Na4Fe3(PO4)2(P2O7) is regarded as a promising cathode material for sodium-ion batteries due to its affordability, non-toxic nature, and excellent structural stability. However, its electrochemical performance is hampered by its poor electronic conductivity. Meanwhile, most of the previous studies utilized spray-drying and sol–gel methods to synthesize Na4Fe3(PO4)2(P2O7), and the large-scale synthesis of the cathode material is still challenging. This study presents a composite cathode material, Na4Fe2.94Al0.04(PO4)2(P2O7)/C, prepared via a straightforward ball-milling technique. By substituting Al3+ minimally into the Fe2+ site of NFPP, Fe defects are introduced into the structure, hindering the formation of NaFePO4 and thereby enhancing Na-ion diffusion kinetics and conductivity. Additionally, the average length of AlO bonds (2.18 Å) is slightly smaller than that of FeO bonds (2.19 Å), contributing to the superior structural stability. The smaller ionic radii of Al3+ induce lattice contraction, further enhancing the structural stability. Moreover, the surface of material particles is coated with a thin layer of carbon, ensuring excellent electrical conductivity and outstanding structure stability. As a result, the Na4Fe2.94Al0.04(PO4)2(P2O7)/C cathode exhibits excellent electrochemical performance, leading to high discharge capacity (128.1 mAh g−1 at 0.2 C), outstanding rate performance (98.1 mAh g−1 at 10 C), and long cycle stability (83.7 % capacity retention after 3000 cycles at 10 C). This study demonstrates a low-cost, ultra-stable, and high-rate cathode material prepared by simple mechanical activation for sodium-ion batteries which has application prospects for large-scale production.
科研通智能强力驱动
Strongly Powered by AbleSci AI