Rapid mechanochemical synthesis of high-performance Na4Fe2.94Al0.04(PO4)2(P2O7)/C cathode material for sodium-ion storage

电化学 阴极 离子 电导率 结构稳定性 材料科学 离子键合 化学工程 复合数 离子电导率 化学 复合材料 冶金 电极 工程类 物理化学 有机化学 电解质 结构工程
作者
Yian Wang,Wenbin Fei,Xiaoping Zhang,Mengting Deng,Shengxing Lu,Jiuxiang Zhang,Kexin Rao,Yu Quan Yuan,Yulei Sui,Ling Wu
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:664: 220-227 被引量:4
标识
DOI:10.1016/j.jcis.2024.03.036
摘要

Na4Fe3(PO4)2(P2O7) is regarded as a promising cathode material for sodium-ion batteries due to its affordability, non-toxic nature, and excellent structural stability. However, its electrochemical performance is hampered by its poor electronic conductivity. Meanwhile, most of the previous studies utilized spray-drying and sol–gel methods to synthesize Na4Fe3(PO4)2(P2O7), and the large-scale synthesis of the cathode material is still challenging. This study presents a composite cathode material, Na4Fe2.94Al0.04(PO4)2(P2O7)/C, prepared via a straightforward ball-milling technique. By substituting Al3+ minimally into the Fe2+ site of NFPP, Fe defects are introduced into the structure, hindering the formation of NaFePO4 and thereby enhancing Na-ion diffusion kinetics and conductivity. Additionally, the average length of AlO bonds (2.18 Å) is slightly smaller than that of FeO bonds (2.19 Å), contributing to the superior structural stability. The smaller ionic radii of Al3+ induce lattice contraction, further enhancing the structural stability. Moreover, the surface of material particles is coated with a thin layer of carbon, ensuring excellent electrical conductivity and outstanding structure stability. As a result, the Na4Fe2.94Al0.04(PO4)2(P2O7)/C cathode exhibits excellent electrochemical performance, leading to high discharge capacity (128.1 mAh g−1 at 0.2 C), outstanding rate performance (98.1 mAh g−1 at 10 C), and long cycle stability (83.7 % capacity retention after 3000 cycles at 10 C). This study demonstrates a low-cost, ultra-stable, and high-rate cathode material prepared by simple mechanical activation for sodium-ion batteries which has application prospects for large-scale production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白发布了新的文献求助100
刚刚
1秒前
1秒前
快乐绝悟完成签到,获得积分20
1秒前
李爱国应助几又采纳,获得10
1秒前
zeng完成签到,获得积分10
2秒前
隐形曼青应助科研小白采纳,获得10
2秒前
GGZ发布了新的文献求助10
4秒前
研友_8Kedgn发布了新的文献求助10
4秒前
4秒前
Yziii举报无风求助涉嫌违规
4秒前
暮凝发布了新的文献求助10
5秒前
情怀应助Alyssa采纳,获得10
5秒前
yushuner完成签到,获得积分10
5秒前
fuyibo发布了新的文献求助30
6秒前
小顾完成签到,获得积分20
7秒前
吃书的猪完成签到,获得积分10
8秒前
lidd完成签到,获得积分10
8秒前
9秒前
czlianjoy完成签到,获得积分10
9秒前
YuGe完成签到,获得积分10
9秒前
10秒前
10秒前
zorro3574完成签到,获得积分10
10秒前
10秒前
10秒前
成佳木完成签到,获得积分10
11秒前
拼搏绿柳完成签到,获得积分10
12秒前
奕初阳发布了新的文献求助10
13秒前
李明发布了新的文献求助10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
竹筏过海应助科研通管家采纳,获得30
13秒前
云云的困困完成签到,获得积分20
13秒前
itsserene应助科研通管家采纳,获得20
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
刘若鑫发布了新的文献求助10
14秒前
L~完成签到,获得积分10
14秒前
深情安青应助阿泽采纳,获得10
15秒前
青青发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587