亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preventing Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models

降级(电信) 计算机科学 零(语言学) 人工智能 弹丸 传输(计算) 材料科学 电信 语言学 哲学 并行计算 冶金
作者
Zangwei Zheng,Mingyuan Ma,Kai Wang,Ziheng Qin,Xiangyu Yue,Yang You
标识
DOI:10.1109/iccv51070.2023.01752
摘要

Continual learning (CL) can help pre-trained vision-language models efficiently adapt to new or under-trained data distributions without re-training. Nevertheless, during the continual training of the Contrastive Language-Image Pre-training (CLIP) model, we observe that the model's zero-shot transfer ability significantly degrades due to catastrophic forgetting. Existing CL methods can mitigate forgetting by replaying previous data. However, since the CLIP dataset is private, replay methods cannot access the pre-training dataset. In addition, replaying data of previously learned downstream tasks can enhance their performance but comes at the cost of sacrificing zero-shot performance. To address this challenge, we propose a novel method ZSCL to prevent zero-shot transfer degradation in the continual learning of vision-language models in both feature and parameter space. In the feature space, a reference dataset is introduced for distillation between the current and initial models. The reference dataset should have semantic diversity but no need to be labeled, seen in pre-training, or matched image-text pairs. In parameter space, we prevent a large parameter shift by averaging weights during the training. We propose a more challenging Multi-domain Task Incremental Learning (MTIL) benchmark to evaluate different methods, where tasks are from various domains instead of class-separated in a single dataset. Our method outperforms other methods in the traditional class-incremental learning setting and the MTIL by 9.7% average score. Our code locates at https: //github.com/Thunderbeee/ZSCL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
量子星尘发布了新的文献求助10
9秒前
null应助可靠灰狼采纳,获得10
34秒前
烟花应助tutu采纳,获得10
43秒前
arsenal完成签到 ,获得积分10
1分钟前
2分钟前
zxbbbb发布了新的文献求助10
2分钟前
2分钟前
Bob完成签到,获得积分10
3分钟前
3分钟前
可靠灰狼关注了科研通微信公众号
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
j7完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
zxbbbb完成签到,获得积分10
5分钟前
00发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
乐乐应助眼睛大的松鼠采纳,获得10
6分钟前
null应助可靠灰狼采纳,获得10
6分钟前
北宅一枝花完成签到,获得积分20
6分钟前
NexusExplorer应助ceeray23采纳,获得20
6分钟前
情怀应助00采纳,获得10
6分钟前
6分钟前
lngenuo完成签到,获得积分10
6分钟前
翡冷翠完成签到,获得积分10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
翡冷翠发布了新的文献求助10
6分钟前
6分钟前
科目三应助ceeray23采纳,获得20
6分钟前
7分钟前
科研王者发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707229
关于积分的说明 14938986
捐赠科研通 4769416
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475038