Preventing Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models

降级(电信) 计算机科学 零(语言学) 人工智能 弹丸 传输(计算) 材料科学 电信 语言学 哲学 并行计算 冶金
作者
Zangwei Zheng,Mingyuan Ma,Kai Wang,Ziheng Qin,Xiangyu Yue,Yang You
标识
DOI:10.1109/iccv51070.2023.01752
摘要

Continual learning (CL) can help pre-trained vision-language models efficiently adapt to new or under-trained data distributions without re-training. Nevertheless, during the continual training of the Contrastive Language-Image Pre-training (CLIP) model, we observe that the model's zero-shot transfer ability significantly degrades due to catastrophic forgetting. Existing CL methods can mitigate forgetting by replaying previous data. However, since the CLIP dataset is private, replay methods cannot access the pre-training dataset. In addition, replaying data of previously learned downstream tasks can enhance their performance but comes at the cost of sacrificing zero-shot performance. To address this challenge, we propose a novel method ZSCL to prevent zero-shot transfer degradation in the continual learning of vision-language models in both feature and parameter space. In the feature space, a reference dataset is introduced for distillation between the current and initial models. The reference dataset should have semantic diversity but no need to be labeled, seen in pre-training, or matched image-text pairs. In parameter space, we prevent a large parameter shift by averaging weights during the training. We propose a more challenging Multi-domain Task Incremental Learning (MTIL) benchmark to evaluate different methods, where tasks are from various domains instead of class-separated in a single dataset. Our method outperforms other methods in the traditional class-incremental learning setting and the MTIL by 9.7% average score. Our code locates at https: //github.com/Thunderbeee/ZSCL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
刚刚
QQ完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
zuhayr完成签到,获得积分10
1秒前
王卫应助黄垚采纳,获得10
3秒前
imricc完成签到 ,获得积分10
3秒前
4秒前
好困应助袁青寒采纳,获得10
4秒前
大力帽子发布了新的文献求助10
4秒前
梅子完成签到,获得积分10
4秒前
果冻呀完成签到,获得积分10
4秒前
朱丽君完成签到,获得积分10
5秒前
kento应助小凯采纳,获得50
5秒前
hxj完成签到,获得积分10
6秒前
Breez2004发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Daisy完成签到 ,获得积分10
8秒前
Lynn完成签到,获得积分10
8秒前
8秒前
Liang完成签到,获得积分10
9秒前
l7826522完成签到,获得积分20
9秒前
王昕钥完成签到,获得积分10
9秒前
Maestro_S应助nuonuoweng采纳,获得10
10秒前
所所应助火星上的幻雪采纳,获得10
10秒前
JamesPei应助crystal采纳,获得10
10秒前
10秒前
成就宛完成签到,获得积分10
10秒前
11秒前
董恋风完成签到,获得积分10
11秒前
12秒前
12秒前
无奈茹妖完成签到 ,获得积分10
12秒前
xing完成签到 ,获得积分10
13秒前
清yu关注了科研通微信公众号
13秒前
xxx发布了新的文献求助10
14秒前
王辣辣发布了新的文献求助10
14秒前
Hello应助乃惜采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941