催化作用
相变
尖晶石
材料科学
光催化
氧化物
化学物理
相(物质)
过渡金属
钙钛矿(结构)
吸附
无机化学
光化学
拓扑(电路)
化学工程
化学
物理化学
结晶学
生物化学
量子力学
工程类
冶金
组合数学
有机化学
数学
物理
作者
Sudong Yang,Xu Guo,Xiaoning Li,Tianze Wu,Longhua Zou,Zhiying He,Qing Xu,Junjie Zheng,Lin Chen,Qingyuan Wang,Zhichuan J. Xu
标识
DOI:10.1002/anie.202317957
摘要
Abstract Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO 2 photoreduction. Herein, we demonstrate that the adsorption can be fine‐tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni‐Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock‐salt phase. Such in situ phase transition empowers the Ni‐Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock‐salt heterojunction supported on GA stands out for an exceptional photocatalytic CO 2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g −1 h −1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co 2+ in octahedral site, which can effectively enhance the Co‐O covalency. This synergistic effect balances the surface activation of CO 2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate‐limiting step.
科研通智能强力驱动
Strongly Powered by AbleSci AI