Multi input–Multi output 3D CNN for dementia severity assessment with incomplete multimodal data

痴呆 计算机科学 人工智能 机器学习 数据挖掘 疾病 医学 病理
作者
Michela Gravina,Ángel García‐Pedrero,Consuelo Gonzalo‐Martín,Carlo Sansone,Paolo Soda
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:149: 102774-102774 被引量:7
标识
DOI:10.1016/j.artmed.2024.102774
摘要

Alzheimer's Disease is the most common cause of dementia, whose progression spans in different stages, from very mild cognitive impairment to mild and severe conditions. In clinical trials, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are mostly used for the early diagnosis of neurodegenerative disorders since they provide volumetric and metabolic function information of the brain, respectively. In recent years, Deep Learning (DL) has been employed in medical imaging with promising results. Moreover, the use of the deep neural networks, especially Convolutional Neural Networks (CNNs), has also enabled the development of DL-based solutions in domains characterized by the need of leveraging information coming from multiple data sources, raising the Multimodal Deep Learning (MDL). In this paper, we conduct a systematic analysis of MDL approaches for dementia severity assessment exploiting MRI and PET scans. We propose a Multi Input - Multi Output 3D CNN whose training iterations change according to the characteristic of the input as it is able to handle incomplete acquisitions, in which one image modality is missed. Experiments performed on OASIS-3 dataset show the satisfactory results of the implemented network, which outperforms approaches exploiting both single image modality and different MDL fusion techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
爱毁灭完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
oysp应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得150
1秒前
ding应助科研通管家采纳,获得10
2秒前
xu1227完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
LaTeXer应助科研通管家采纳,获得150
2秒前
2秒前
2秒前
2秒前
好的番茄loconte完成签到,获得积分10
2秒前
大力的莺完成签到,获得积分10
2秒前
2秒前
luo完成签到,获得积分10
3秒前
王旭发布了新的文献求助10
3秒前
苏大强发布了新的文献求助10
3秒前
4秒前
英俊的铭应助飞雪采纳,获得10
5秒前
顺心凡之完成签到,获得积分10
5秒前
xu1227发布了新的文献求助10
5秒前
搜集达人应助iuhgnor采纳,获得10
5秒前
5秒前
5秒前
Leslielaw完成签到,获得积分10
5秒前
6秒前
科研通AI5应助cccxy采纳,获得10
6秒前
6秒前
赘婿应助Han0101采纳,获得10
7秒前
快乐的晟睿完成签到,获得积分10
7秒前
暮封完成签到,获得积分10
7秒前
8秒前
研究小白完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541