Real-Time Point Cloud Action Recognition System with Automated Point Cloud Preprocessing

云计算 计算机科学 点云 预处理器 动作(物理) 点(几何) 人工智能 操作系统 数学 物理 几何学 量子力学
作者
Yen‐Ting Lai,Cheng-Hung Lin,Po‐Yung Chou
标识
DOI:10.1109/icce59016.2024.10444448
摘要

Point cloud action recognition has the advantage of being less affected by changes in lighting and viewing angle, as it focuses on the three-dimensional position of an object rather than pixel values. This enables robust recognition performance even in complex and dark environments. Additionally, point cloud action recognition finds widespread applications in fields such as robotics, virtual reality, autonomous driving, human-computer interaction, and game development. For instance, understanding human actions is crucial for better interaction and collaboration in robotics, while in virtual reality, it can capture and reproduce user movements to enhance realism and interactivity. To build a smoothly operating point cloud action recognition system, it is often necessary to filter out background and irrelevant points, resulting in clean and aligned data. In previous methods, point cloud filtering and action recognition were usually performed separately, with fewer systems operating together or action recognition without background filtering. In this paper, we propose a pipeline that enables users to directly acquire point cloud data from the Azure Kinect DK and perform comprehensive automated preprocessing. This generates cleaner point cloud data without background points, suitable for action recognition. Our approach utilizes PSTNet for point cloud action recognition and trains the model on the dataset obtained through automated preprocessing, which includes 12 action classes. Finally, we have developed a real-time point cloud action recognition system that combines automated point cloud preprocessing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcm77发布了新的文献求助10
刚刚
释棱完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助30
1秒前
1秒前
Ayn发布了新的文献求助10
1秒前
You发布了新的文献求助10
1秒前
2秒前
4秒前
FashionBoy应助科研民工采纳,获得10
5秒前
灿烂千阳完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
NXK发布了新的文献求助10
6秒前
6秒前
6秒前
SciGPT应助no1isme采纳,获得10
6秒前
瓜瓜发布了新的文献求助10
6秒前
饱满的诗霜关注了科研通微信公众号
7秒前
cc应助wing采纳,获得20
7秒前
211发布了新的文献求助10
7秒前
修越完成签到,获得积分10
8秒前
CodeCraft应助Regina采纳,获得10
8秒前
情怀应助xixilamn采纳,获得10
8秒前
壮壮发布了新的文献求助10
9秒前
在水一方应助小新同学采纳,获得10
9秒前
10秒前
10秒前
Owen应助sule采纳,获得10
10秒前
10秒前
修越发布了新的文献求助10
10秒前
大模型应助荻野千寻采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
xiaowang发布了新的文献求助10
11秒前
12秒前
lintao0836完成签到,获得积分20
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932