A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer

无线电技术 食管癌 医学 放化疗 放射科 新辅助治疗 癌症 肿瘤科 放射治疗 内科学 乳腺癌
作者
Zhiyang Li,Fuqiang Wang,Shouxin Zhang,Shenglong Xie,Peng Lei,Hui Xu,Yun Wang
出处
期刊:Ejso [Elsevier]
卷期号:50 (4): 108052-108052
标识
DOI:10.1016/j.ejso.2024.108052
摘要

Abstract

Objective

Develop a method for selecting esophageal cancer patients achieving pathological complete response with pre-neoadjuvant therapy chest-enhanced CT scans.

Methods

Two hundred and one patients from center 1 were enrolled, split into training and testing sets (7:3 ratio), with an external validation set of 30 patients from center 2. Radiomics features from intra-tumoral and peritumoral images were extracted and dimensionally reduced using Student's t-test and least absolute shrinkage and selection operator. Four machine learning classifiers were employed to build models, with the best-performing models selected based on accuracy and stability. ROC curves were utilized to determine the top prediction model, and its generalizability was evaluated on the external validation set.

Results

Among 16 models, the integrated-XGBoost and integrated-random forest models performed the best, with average ROC AUCs of 0.906 and 0.918, respectively, and RSDs of 6.26 and 6.89 in the training set. In the testing set, AUCs were 0.845 and 0.871, showing no significant difference in ROC curves. External validation set AUCs for integrated-XGBoost and integrated-random forest models were 0.650 and 0.749.

Conclusion

Incorporating peritumoral radiomics features into the analysis enhances predictive performance for esophageal cancer patients undergoing neoadjuvant chemoradiotherapy, paving the way for improved treatment outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿元发布了新的文献求助10
2秒前
稳重乌龟完成签到,获得积分10
4秒前
7秒前
xinxin完成签到 ,获得积分10
10秒前
12秒前
Orange应助快乐自行车采纳,获得30
13秒前
kysl完成签到,获得积分10
14秒前
詹卓林完成签到,获得积分10
17秒前
wx完成签到,获得积分10
19秒前
伊丽莎白完成签到,获得积分10
20秒前
内向翰应助芝士香猪采纳,获得10
22秒前
斯文败类应助詹卓林采纳,获得10
23秒前
zhangnan完成签到,获得积分10
24秒前
28秒前
江知之完成签到 ,获得积分0
29秒前
pragmatic完成签到,获得积分10
29秒前
29秒前
Lucas应助酷酷的芙采纳,获得10
30秒前
XY完成签到 ,获得积分10
33秒前
昏睡的醉山完成签到 ,获得积分10
33秒前
科研通AI2S应助lily88采纳,获得10
35秒前
1123432412发布了新的文献求助10
35秒前
scanker1981完成签到,获得积分10
35秒前
星辰大海应助rich采纳,获得10
36秒前
紫米完成签到,获得积分10
39秒前
Banff完成签到,获得积分10
41秒前
柠檬完成签到,获得积分20
43秒前
Geist应助TALE采纳,获得10
45秒前
易清华完成签到 ,获得积分10
50秒前
小蘑菇应助1123432412采纳,获得10
51秒前
抹茶蛋仔完成签到,获得积分10
52秒前
NuLi完成签到 ,获得积分10
52秒前
隐形荟完成签到 ,获得积分10
54秒前
寄语明月完成签到,获得积分10
56秒前
老衲完成签到,获得积分0
57秒前
Wjh123456完成签到,获得积分10
57秒前
byzhao19完成签到,获得积分10
58秒前
积极的尔竹完成签到,获得积分10
58秒前
kemal完成签到,获得积分10
59秒前
laogao完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139737
求助须知:如何正确求助?哪些是违规求助? 2790662
关于积分的说明 7796051
捐赠科研通 2447104
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176