反硝化
硫黄
过程(计算)
环境科学
理论(学习稳定性)
化学
环境工程
环境化学
废物管理
工程类
氮气
计算机科学
有机化学
操作系统
机器学习
作者
Jiamin Xu,Hu-Yi Zi,Haoran Xu,Yifan Zhang,Daheng Ren,Ran Zeng,Gui-Jiao Zhang,Aijie Wang,Hao-Yi Cheng
出处
期刊:Water Research
[Elsevier]
日期:2024-02-27
卷期号:254: 121391-121391
被引量:3
标识
DOI:10.1016/j.watres.2024.121391
摘要
Elemental sulfur-based denitrification (ESDeN) technology is known as a cost-saving alternative to its heterotrophic counterpart for nutrient removal from organic-deficient water. However, the traditional fixed-bed reactor (FixBR), as an extensively used process, suffers from a low denitrification rate and even performance deterioration during long-term operation. Herein, we proposed a novel elemental sulfur-based denitrifying moving-bed reactor (ESDeN-MovBR), in which a screw rotator was employed to drive the filled sulfur particles to be microfluidized vertically (a state of vertical-loop movement). Our results showed that the ESDeN-MovBR realized much superior and more stable denitrification performance compared to the ESDeN-FixBR, as indicated by 3.09-fold higher denitrification rate and over one order of magnitude lower intermediates (NO2− and N2O) yield, which could last for over 100 days. Further research revealed that the microfluidization of sulfur particles facilitated the expelling of nitrogen bubbles and excessive biomass, resulting in the prolongation of actual hydraulic retention time by over 80 % and could partially explain the higher denitrification rate in ESDeN-MovBR. The remaining contribution to the improvement of denitrification rate was suggested to be result from changes in biofilm properties, in which the biofilm thickness of ESDeN-MovBR was found to be 3.29 times thinner yet enriched with 2.52 times more autotrophic denitrifiers. This study offered a completely new solution to boost up the denitrification performance of ESDeN technology and provided in-depth evidence for the necessity of biofilm thickness control in such technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI