稳健性(进化)
PID控制器
控制理论(社会学)
闭环
瞬态(计算机编程)
循环(图论)
沉积(地质)
材料科学
算法
工程类
计算机科学
控制工程
化学
控制(管理)
数学
温度控制
人工智能
地质学
古生物学
生物化学
组合数学
沉积物
基因
操作系统
作者
Bingjun Liu,Weiwei Liu,Yukun Xia,Yujin Huang,Yanming Liu,Yongxin Zhao,Huanqiang Liu,Zhengkai Wang,Wanyang Li,Jianrong Song,Zongyu Ma,Zeyuan Liu
标识
DOI:10.1007/s00170-024-13002-2
摘要
In the direct laser deposition (DLD) process, it is common to employ constant processing parameters. The utilization of the constant parameters may lead to fluctuations in the dynamic evolution of the molten pool, primarily due to the intricate thermal effects involved, which will significantly impact the processing quality. To address this issue, this study proposed a closed-loop control approach that effectively modifies processing parameters in real time by targeting on the molten pool transient area. The type of the laser used in this study is a flat-top beam. Laser power, powder feeder rate, and scanning speed are the input variables of the study to control molten pool, considering the manufacturing system. The most suitable processing parameter to control the molten pool area was found to be the laser power by a set of orthogonal experiments, with a correlation coefficient of 0.706, and significance level of 0.002. Then, the dynamic response relationship between laser power and the molten pool area was mathematically characterized by a third-order transfer function model to simplify the complex physical model of the DLD process. Subsequently, a PID controller with a filtering coefficient and anti-windup compensation was chosen compared with the other controller. In the validation experiments, it was observed that the closed-loop processing group demonstrated improved stability in maintaining the molten pool transient area, with a notable decrease of 33.7% in variability compared to the open-loop processing group. As a result, the deposited layer of the closed-loop processing group exhibited a much more satisfying surface quality and heat affect zone than the open-loop group. This study established a third-order mathematical model of the dynamic molten pool and realized the optimization of deposition quality by controlling the molten pool transient area with an enhanced PID controller, providing a fundamental basis for improving the consistency of the direct laser deposition processing quality through the implementation of real-time feedback control of molten pool physics.
科研通智能强力驱动
Strongly Powered by AbleSci AI