Improving the performance of prefabricated houses through multi-objective optimization design

预制 尺寸 多目标优化 帕累托原理 能源消耗 优化设计 工程类 可持续设计 高效能源利用 生命周期成本分析 过程(计算) 计算机科学 数学优化 可靠性工程 持续性 土木工程 运营管理 数学 机器学习 视觉艺术 艺术 电气工程 操作系统 生物 生态学
作者
Yingbo Ji,Jing Lv,Hong Xian Li,Yan Liu,Fuyi Yao,Xinnan Liu,Siqi Wang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:84: 108579-108579 被引量:3
标识
DOI:10.1016/j.jobe.2024.108579
摘要

Building prefabrication technology provides opportunities to improve the efficiency of construction process; however, there is a missing link between building prefabrication and sustainable building design. To achieve balanced energy efficiency, economic performance, and environmental objectives of prefabricated houses, this research proposes a multi-objective optimization framework to minimize building energy consumption, life-cycle cost, and carbon emission. Firstly, based on the selected 16 design parameters, the energy performance of 1.89×1013 design scenarios is simulated using a BIM model, DesignBuilder, and JEPlus coupled with a developed Excel program. Then, multi-objective optimization is conducted to optimize comprehensive building energy consumption (CVBEC), life-cycle cost (LCC), and life-cycle carbon emission (LCCO2), with Artificial Neural Network (ANN) coupled with NSGA-II algorithm used to achieve the Pareto optimal solutions. The proposed framework is demonstrated in a prefabricated steel house in Beijing. Results show that the design solution with the smallest CVBEC, LCC, and LCCO2 among the Pareto optimal solutions can reduce the CVBEC by 127.4 %–117.9 %, LCC by 20.3 %–4.5 %, and LCCO2 by 150.9 %–145.5 %. The PV system sizing is then considered for further analysis. Compared to the three Pareto optimal solutions without PV, the scenario with an 8 kW PV system results in a reduction in CVBEC by 87.6 kWh/m2, LCC by 84.4 CNY/m2, and LCCO2 reduction of 1121.7 kgCO2eq/m2. This research customizes an optimization framework for prefabricated houses, which can be quickly solved to obtain the optimal energy-efficient design solutions for prefabricated houses in terms of energy efficiency, economic performance, and environmental performance, and allows designers to know how they should choose prefabricated enclosure, building orientation, and photovoltaic (PV) power generation system, etc., and therefore can be effectively used for energy-efficient design of prefabricated houses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喔喔发布了新的文献求助10
2秒前
Cwx2020发布了新的文献求助10
2秒前
难摧发布了新的文献求助10
2秒前
7秒前
7秒前
8秒前
10秒前
叮叮完成签到 ,获得积分10
10秒前
随便完成签到,获得积分10
10秒前
11秒前
包容的剑发布了新的文献求助10
11秒前
12秒前
明眸完成签到,获得积分10
12秒前
14秒前
伊心完成签到,获得积分10
14秒前
哇咔咔发布了新的文献求助10
14秒前
小菱发布了新的文献求助10
14秒前
cjlinhunu发布了新的文献求助10
15秒前
喔喔完成签到,获得积分10
16秒前
阿司匹林发布了新的文献求助10
17秒前
麻麻发布了新的文献求助10
18秒前
19秒前
19秒前
景自端发布了新的文献求助10
23秒前
23秒前
24秒前
充电宝应助笨笨从凝采纳,获得10
24秒前
Lucas应助WFR采纳,获得10
25秒前
daydayup发布了新的文献求助10
25秒前
cjlinhunu完成签到,获得积分10
26秒前
孟严青完成签到 ,获得积分10
26秒前
27秒前
清净126完成签到 ,获得积分10
27秒前
28秒前
归海一刀发布了新的文献求助10
28秒前
紫藤发布了新的文献求助20
29秒前
33秒前
Anri发布了新的文献求助10
33秒前
Ahha发布了新的文献求助10
33秒前
hubo完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503