亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the performance of prefabricated houses through multi-objective optimization design

预制 尺寸 多目标优化 帕累托原理 能源消耗 优化设计 工程类 可持续设计 高效能源利用 生命周期成本分析 过程(计算) 计算机科学 数学优化 可靠性工程 持续性 土木工程 运营管理 数学 机器学习 视觉艺术 艺术 电气工程 操作系统 生物 生态学
作者
Yingbo Ji,Junyi Lv,Hong Li,Yan Liu,Fuyi Yao,Xinnan Liu,Siqi Wang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:84: 108579-108579 被引量:11
标识
DOI:10.1016/j.jobe.2024.108579
摘要

Building prefabrication technology provides opportunities to improve the efficiency of construction process; however, there is a missing link between building prefabrication and sustainable building design. To achieve balanced energy efficiency, economic performance, and environmental objectives of prefabricated houses, this research proposes a multi-objective optimization framework to minimize building energy consumption, life-cycle cost, and carbon emission. Firstly, based on the selected 16 design parameters, the energy performance of 1.89×1013 design scenarios is simulated using a BIM model, DesignBuilder, and JEPlus coupled with a developed Excel program. Then, multi-objective optimization is conducted to optimize comprehensive building energy consumption (CVBEC), life-cycle cost (LCC), and life-cycle carbon emission (LCCO2), with Artificial Neural Network (ANN) coupled with NSGA-II algorithm used to achieve the Pareto optimal solutions. The proposed framework is demonstrated in a prefabricated steel house in Beijing. Results show that the design solution with the smallest CVBEC, LCC, and LCCO2 among the Pareto optimal solutions can reduce the CVBEC by 127.4 %–117.9 %, LCC by 20.3 %–4.5 %, and LCCO2 by 150.9 %–145.5 %. The PV system sizing is then considered for further analysis. Compared to the three Pareto optimal solutions without PV, the scenario with an 8 kW PV system results in a reduction in CVBEC by 87.6 kWh/m2, LCC by 84.4 CNY/m2, and LCCO2 reduction of 1121.7 kgCO2eq/m2. This research customizes an optimization framework for prefabricated houses, which can be quickly solved to obtain the optimal energy-efficient design solutions for prefabricated houses in terms of energy efficiency, economic performance, and environmental performance, and allows designers to know how they should choose prefabricated enclosure, building orientation, and photovoltaic (PV) power generation system, etc., and therefore can be effectively used for energy-efficient design of prefabricated houses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
8秒前
桐桐应助111采纳,获得10
13秒前
14秒前
爱听歌凤灵完成签到,获得积分10
16秒前
今日发布了新的文献求助10
19秒前
Lucas应助七色光采纳,获得10
43秒前
充电宝应助彭蓬采纳,获得10
45秒前
Splaink完成签到 ,获得积分10
47秒前
49秒前
52秒前
科研通AI5应助花骨头采纳,获得10
55秒前
今日完成签到,获得积分10
57秒前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
1分钟前
杭州007发布了新的文献求助30
1分钟前
1分钟前
1分钟前
完美世界应助展锋采纳,获得10
1分钟前
蟹治猿完成签到 ,获得积分10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918