图灵
同步(交流)
反应扩散系统
边界(拓扑)
集合(抽象数据类型)
数学
非线性系统
Neumann边界条件
复杂网络
图案形成
扩散
统计物理学
计算机科学
拓扑(电路)
数学分析
组合数学
物理
热力学
生物
程序设计语言
量子力学
遗传学
作者
M. A. Aziz-Alaoui,Guillaume Cantin,Alexandre Thorel
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2024-01-16
卷期号:37 (2): 025011-025011
标识
DOI:10.1088/1361-6544/ad1a48
摘要
Abstract We present an innovative complex network of reaction–diffusion systems set in distinct domains, with boundary couplings. The complex network models the evolution of interacting populations living in a heterogeneous and fragmented habitat, whose biological individuals migrate from one patch to another. In our model, the displacements of individuals are described by mixed boundary couplings, involving both the Neumann and Robin boundary conditions, which improve the modeling of migrations by point-wise couplings. We investigate the cases of diffusion in isotropic and anisotropic habitats and establish original sufficient conditions of synchronization in this complex network model, for complete graphs, cyclic graphs and rings of nearest neighbors. In parallel, we apply our theoretical framework to a nonlinear predator–prey model with Leslie–Gower-type functional response and explore numerically the emergence of synchronization on heterogeneous Turing patterns.
科研通智能强力驱动
Strongly Powered by AbleSci AI