Flight Dynamic Uncertainty Quantification Modeling Using Physics-Informed Neural Networks

人工神经网络 计算机科学 不确定度量化 人工智能 机器学习
作者
Nathaniel Michek,Piyush M. Mehta,Wade Huebsch
标识
DOI:10.2514/6.2024-0575
摘要

When attempting to develop aerodynamic models for extreme flight conditions, including high angle of attack, high rotational rates, and tumbling motion, many classical methods have challenges in accurately modeling the highly non-linear aerodynamic effects present. Physics-Informed Neural Networks (PINNs) have previously been shown to be a potential technique to model these non-linear aerodynamic effects when framed as a system identification problem. PINNs are well suited to this problem as they benefit from the universal approximation abilities of neural networks while directly incorporating known physical constraints into the training process. One of the main challenges in machine learning algorithms, including PINNs, is quantifying the confidence in a deterministic model prediction. This work expands on the previous development of PINNs as an aerodynamic and system identification tool by incorporating uncertainty quantification through three ensemble methods to provide calibrated confidence intervals on both aerodynamic coefficients and propagated trajectories. This work demonstrates and evaluates these methods on a simulated F16 case study where up to 100 PINN models are trained on varying training datasets. These models provide aerodynamic coefficients directly and are used to propagate trajectories within a 6DOF simulation environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxy完成签到,获得积分10
1秒前
燕子发布了新的文献求助10
1秒前
山复尔尔完成签到,获得积分10
1秒前
NexusExplorer应助刻苦惜萍采纳,获得10
1秒前
zy发布了新的文献求助10
2秒前
岁月静好完成签到,获得积分10
2秒前
优雅的水晶男孩完成签到,获得积分10
2秒前
脑洞疼应助zhuzhu采纳,获得10
2秒前
2秒前
3秒前
笨笨卡卡西完成签到,获得积分10
3秒前
Chase完成签到,获得积分10
3秒前
ZRBY完成签到,获得积分10
3秒前
1112222完成签到,获得积分10
4秒前
吉他平方发布了新的文献求助10
4秒前
昵称完成签到 ,获得积分10
4秒前
mushini完成签到,获得积分10
4秒前
5秒前
桔梗完成签到 ,获得积分10
5秒前
5秒前
爱喝蜜桃乌龙完成签到,获得积分10
5秒前
英姑应助蔡博颖采纳,获得10
5秒前
爆炸发布了新的文献求助10
5秒前
6秒前
7秒前
半凡发布了新的文献求助30
7秒前
Akim应助只爱LJT采纳,获得10
7秒前
A阿澍完成签到,获得积分10
7秒前
lly2025完成签到,获得积分10
7秒前
ZJPPPP完成签到,获得积分10
8秒前
8秒前
健康的人生完成签到,获得积分10
8秒前
8秒前
xuxuxuxu发布了新的文献求助10
8秒前
Mavis发布了新的文献求助50
8秒前
8秒前
drughunter009发布了新的文献求助10
8秒前
9秒前
yyq完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005