Flight Dynamic Uncertainty Quantification Modeling Using Physics-Informed Neural Networks

人工神经网络 计算机科学 不确定度量化 人工智能 机器学习
作者
Nathaniel Michek,Piyush M. Mehta,Wade Huebsch
标识
DOI:10.2514/6.2024-0575
摘要

When attempting to develop aerodynamic models for extreme flight conditions, including high angle of attack, high rotational rates, and tumbling motion, many classical methods have challenges in accurately modeling the highly non-linear aerodynamic effects present. Physics-Informed Neural Networks (PINNs) have previously been shown to be a potential technique to model these non-linear aerodynamic effects when framed as a system identification problem. PINNs are well suited to this problem as they benefit from the universal approximation abilities of neural networks while directly incorporating known physical constraints into the training process. One of the main challenges in machine learning algorithms, including PINNs, is quantifying the confidence in a deterministic model prediction. This work expands on the previous development of PINNs as an aerodynamic and system identification tool by incorporating uncertainty quantification through three ensemble methods to provide calibrated confidence intervals on both aerodynamic coefficients and propagated trajectories. This work demonstrates and evaluates these methods on a simulated F16 case study where up to 100 PINN models are trained on varying training datasets. These models provide aerodynamic coefficients directly and are used to propagate trajectories within a 6DOF simulation environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
nemuruinu应助Rabbit采纳,获得10
3秒前
研友_VZG64n完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
herdy应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
yookia应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
LEMONS应助科研通管家采纳,获得10
5秒前
5秒前
核桃应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
烟花应助科研通管家采纳,获得10
6秒前
复杂萃发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
lalala发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
SciGPT应助朴实山兰采纳,获得10
8秒前
T拐拐发布了新的文献求助10
9秒前
9秒前
棋士发布了新的文献求助10
9秒前
10秒前
qqwrv发布了新的文献求助10
10秒前
月眠眠完成签到,获得积分10
11秒前
dachengzi完成签到,获得积分10
12秒前
Lucas应助大神装采纳,获得10
12秒前
flymove发布了新的文献求助10
13秒前
qiaoshan_Jason完成签到,获得积分10
14秒前
Y.J发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150