Individual deviations from normative electroencephalographic connectivity predict antidepressant response

抗抑郁药 规范性 心理学 脑电图 神经科学 政治学 海马体 法学
作者
Xiaoyu Tong,Hua Xie,Wei Wu,Corey J. Keller,Gregory A. Fonzo,Matthieu Chidharom,Nancy B. Carlisle,Amit Etkin,Yu Zhang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:351: 220-230 被引量:5
标识
DOI:10.1016/j.jad.2024.01.177
摘要

Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo, partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient's response to treatment. Here we develop a novel normative modeling framework to quantify individual deviations in psychopathological dimensions that offers a promising avenue for the personalized treatment for psychiatric disorders. We built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients (102 sertraline-medicated and 119 placebo-medicated). Hamilton depression rating scale (HAMD-17) was assessed at both baseline and after the eight-week antidepressant treatment. We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between sertraline and placebo responses. Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective personalized MDD treatment. Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC), NCT#01407094.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
顾矜应助阔达的小土豆采纳,获得10
7秒前
Sandy发布了新的文献求助10
8秒前
顺利凤完成签到,获得积分10
9秒前
10秒前
ch发布了新的文献求助10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
yanzu应助科研通管家采纳,获得10
11秒前
11秒前
yanzu应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
yanzu应助科研通管家采纳,获得20
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
15秒前
科研通AI5应助尊敬的路灯采纳,获得10
16秒前
16秒前
万能图书馆应助宋晴也采纳,获得10
19秒前
脑洞疼应助pywangsmmu92采纳,获得10
21秒前
zhang完成签到 ,获得积分10
23秒前
23秒前
李健应助四月采纳,获得10
24秒前
绝情继父完成签到,获得积分10
24秒前
25秒前
李爱国应助Aurora采纳,获得10
25秒前
25秒前
26秒前
26秒前
星辰大海应助纯情的心情采纳,获得10
28秒前
29秒前
光亮藏鸟发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
绝情继父发布了新的文献求助10
31秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704536
求助须知:如何正确求助?哪些是违规求助? 3254150
关于积分的说明 9887388
捐赠科研通 2965912
什么是DOI,文献DOI怎么找? 1626606
邀请新用户注册赠送积分活动 770987
科研通“疑难数据库(出版商)”最低求助积分说明 743109