TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads

计算机科学 可扩展性 深度学习 数据挖掘 图形 浮动车数据 实时计算 人工智能 机器学习 交通拥挤 运输工程 工程类 理论计算机科学 数据库
作者
J. Ouyang,M. Yu,Weiren Yu,Zheng Qin,Amelia Regan,Di Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3911-3926
标识
DOI:10.1109/tits.2023.3334558
摘要

The accurate prediction of traffic conditions, including speed, flow, and travel time, poses a critical challenge in urbanization that significantly impacts car owners and road administrators. However, in certain scenarios with restricted road data availability (e.g. lack of traffic light status and signal control strategies, cooperation between road administrators and third parties, etc.), it is imperative to make effective use of basic road information (e.g. historical traffic data and road connectivity) to improve both prediction accuracy and scalability on various arterial road networks against state-of-art deep learning models. In this paper, we propose a spatial-temporal learning framework TPGraph for an accurate prediction of arterial roads' traffic data by effectively utilizing upstream and downstream road information. TPGraph is composed of three major parts: 1) A multi-scale temporal feature fusion module that utilizes a multi-head attention mechanism to integrate recently-periodic features, daily-periodic features, and weekly-periodic features; 2) A multi-graph convolution module that employs graph fusion and graph convolution networks to capture richer spatial semantics, and 3) A dynamic spatial-temporal prediction module that leverages a spatial-temporal transformer for single or multiple traffic-state predictions. Our proposed framework, TPGraph, leverages just multi-scale historical traffic conditions and readily accessible spatial factors as input to generate accurate predictions of future traffic conditions. We mainly evaluate the performance of our approach through multi-step prediction experiments conducted at hourly intervals, forecasting travel time or travel speed for each road at 15 mins, 30 mins, and 1 hour. Furthermore, we conduct extensive experiments on real-world arterial road datasets to demonstrate the superior predictive performance of TPGraph compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66发布了新的文献求助10
1秒前
2秒前
所所应助SlimJoker采纳,获得10
4秒前
刘云发布了新的文献求助10
4秒前
今后应助!!采纳,获得10
5秒前
萌妹完成签到,获得积分10
5秒前
5秒前
5秒前
rui完成签到,获得积分10
7秒前
大力无声完成签到,获得积分10
7秒前
科研通AI2S应助张秋雨采纳,获得10
8秒前
8秒前
yunsww完成签到,获得积分10
9秒前
微微发布了新的文献求助10
9秒前
淡定靖儿发布了新的文献求助10
9秒前
科目三应助ww4566采纳,获得10
10秒前
LDDD完成签到,获得积分10
10秒前
11秒前
星星又累完成签到,获得积分10
11秒前
11秒前
调研昵称发布了新的文献求助10
12秒前
JamesPei应助han采纳,获得10
12秒前
田様应助hushan53采纳,获得10
12秒前
小冉完成签到 ,获得积分10
13秒前
黄雪峰完成签到,获得积分10
13秒前
14秒前
丘比特应助大力无声采纳,获得10
14秒前
15秒前
微微完成签到,获得积分10
16秒前
xzj发布了新的文献求助10
16秒前
zakarya发布了新的文献求助10
16秒前
淡写完成签到,获得积分20
16秒前
破伤疯完成签到 ,获得积分10
17秒前
小小脆脆鲨完成签到 ,获得积分10
18秒前
研友_nqv2WZ完成签到,获得积分10
18秒前
皓月千里完成签到,获得积分10
18秒前
18秒前
婷婷应助张秋雨采纳,获得30
19秒前
水星完成签到,获得积分10
19秒前
耍酷的棉花糖完成签到,获得积分10
20秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388