Deep-Orga: An improved deep learning-based lightweight model for intestinal organoid detection

类有机物 计算机科学 深度学习 人工智能 生物 神经科学
作者
Bing Leng,Hao Jiang,Bidou Wang,Jinxian Wang,Gangyin Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107847-107847 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107847
摘要

Organoids are 3D cultures that are commonly used for biological and medical research in vitro due to their functional and structural similarity to source organs. The development of organoids can be assessed by morphological tests. However, manual analysis of organoid morphology requires intensive labor from professionals and is prone to observer discrepancies. Computer-assisted methods alleviate the pressure of manual labor, especially with the development of deep learning, the performance of morphological detection has been further improved. The aim of this paper is to automate the assessment of organoid morphology using deep learning techniques to reduce the labor pressure of professionals. Based on the lightweight model YOLOX, a lightweight intestinal organoid detection model named Deep-Orga is proposed. First, the performance of the Deep-Orga model is compared with other classical models on the intestinal organoids dataset. Then, ablation experiments are used to validate the improvement of the model detection performance by the improved module. Finally, Deep-Orga is compared with other methods. Deep-Orga achieves optimal organoid detection with a partial increase in computational effort. Using Deep-Orga to replace the manual analysis process provides a new automated method for organoid morphology evaluation. Deep-Orga proposed in this paper is able to accurately assess organoid development, effectively relieving the labor pressure of professionals and avoiding the subjectivity of assessment. This paper demonstrates the potential application of deep learning in the field of organoid morphology analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
且放青山远完成签到,获得积分10
2秒前
科目三应助火柴人采纳,获得10
2秒前
2秒前
4秒前
nini发布了新的文献求助10
5秒前
刀客特liu发布了新的文献求助10
9秒前
星星完成签到,获得积分10
9秒前
10秒前
15秒前
hihi发布了新的文献求助10
16秒前
nini完成签到,获得积分10
17秒前
平淡的快乐完成签到 ,获得积分10
19秒前
ding应助Siriluck采纳,获得10
19秒前
火柴人发布了新的文献求助10
22秒前
boblau完成签到,获得积分10
24秒前
26秒前
26秒前
27秒前
华无剑完成签到,获得积分10
28秒前
善学以致用应助hihi采纳,获得10
28秒前
lianmeiliu发布了新的文献求助10
29秒前
30秒前
JamesPei应助AWESOME Ling采纳,获得10
31秒前
zz发布了新的文献求助10
32秒前
Siriluck发布了新的文献求助10
32秒前
叫滚滚发布了新的文献求助20
33秒前
34秒前
羊羊发布了新的文献求助10
34秒前
35秒前
35秒前
guozizi发布了新的文献求助10
36秒前
lllxxx完成签到 ,获得积分10
37秒前
落 风完成签到,获得积分10
37秒前
银戒完成签到 ,获得积分10
37秒前
38秒前
小圈圈梦魇完成签到,获得积分10
39秒前
123456完成签到,获得积分10
40秒前
不见高山发布了新的文献求助10
41秒前
阿巴发布了新的文献求助10
42秒前
小二郎应助机灵水卉采纳,获得10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425