Deep-Orga: An improved deep learning-based lightweight model for intestinal organoid detection

类有机物 计算机科学 深度学习 人工智能 生物 神经科学
作者
Bing Leng,Hao Jiang,Bidou Wang,Jinxian Wang,Gangyin Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107847-107847 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107847
摘要

Organoids are 3D cultures that are commonly used for biological and medical research in vitro due to their functional and structural similarity to source organs. The development of organoids can be assessed by morphological tests. However, manual analysis of organoid morphology requires intensive labor from professionals and is prone to observer discrepancies. Computer-assisted methods alleviate the pressure of manual labor, especially with the development of deep learning, the performance of morphological detection has been further improved. The aim of this paper is to automate the assessment of organoid morphology using deep learning techniques to reduce the labor pressure of professionals. Based on the lightweight model YOLOX, a lightweight intestinal organoid detection model named Deep-Orga is proposed. First, the performance of the Deep-Orga model is compared with other classical models on the intestinal organoids dataset. Then, ablation experiments are used to validate the improvement of the model detection performance by the improved module. Finally, Deep-Orga is compared with other methods. Deep-Orga achieves optimal organoid detection with a partial increase in computational effort. Using Deep-Orga to replace the manual analysis process provides a new automated method for organoid morphology evaluation. Deep-Orga proposed in this paper is able to accurately assess organoid development, effectively relieving the labor pressure of professionals and avoiding the subjectivity of assessment. This paper demonstrates the potential application of deep learning in the field of organoid morphology analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张牧之完成签到 ,获得积分10
1秒前
2秒前
ccx完成签到,获得积分10
2秒前
3秒前
1111发布了新的文献求助20
4秒前
4秒前
隐形曼青应助emo采纳,获得30
5秒前
5秒前
5秒前
frap完成签到,获得积分10
6秒前
CodeCraft应助丫丫采纳,获得10
7秒前
德鲁猪完成签到,获得积分10
7秒前
笨笨熊发布了新的文献求助10
8秒前
科研通AI2S应助丿小智灬采纳,获得10
8秒前
concentrate完成签到,获得积分20
9秒前
QDF发布了新的文献求助10
9秒前
易小名发布了新的文献求助10
10秒前
Icey完成签到,获得积分10
10秒前
奋斗的萝发布了新的文献求助10
11秒前
qqesk发布了新的文献求助10
11秒前
酷波er应助concentrate采纳,获得10
12秒前
KK驳回了FashionBoy应助
12秒前
12秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
糖糖完成签到 ,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Migue应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
充电宝应助海藻采纳,获得10
13秒前
13秒前
z_完成签到,获得积分10
14秒前
15秒前
16秒前
euphoria完成签到,获得积分10
17秒前
没有花活儿完成签到,获得积分10
18秒前
18秒前
chen发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587