类有机物
计算机科学
深度学习
人工智能
生物
神经科学
作者
Bing Leng,Hao Jiang,Bidou Wang,Jinxian Wang,Gangyin Luo
标识
DOI:10.1016/j.compbiomed.2023.107847
摘要
Organoids are 3D cultures that are commonly used for biological and medical research in vitro due to their functional and structural similarity to source organs. The development of organoids can be assessed by morphological tests. However, manual analysis of organoid morphology requires intensive labor from professionals and is prone to observer discrepancies. Computer-assisted methods alleviate the pressure of manual labor, especially with the development of deep learning, the performance of morphological detection has been further improved. The aim of this paper is to automate the assessment of organoid morphology using deep learning techniques to reduce the labor pressure of professionals. Based on the lightweight model YOLOX, a lightweight intestinal organoid detection model named Deep-Orga is proposed. First, the performance of the Deep-Orga model is compared with other classical models on the intestinal organoids dataset. Then, ablation experiments are used to validate the improvement of the model detection performance by the improved module. Finally, Deep-Orga is compared with other methods. Deep-Orga achieves optimal organoid detection with a partial increase in computational effort. Using Deep-Orga to replace the manual analysis process provides a new automated method for organoid morphology evaluation. Deep-Orga proposed in this paper is able to accurately assess organoid development, effectively relieving the labor pressure of professionals and avoiding the subjectivity of assessment. This paper demonstrates the potential application of deep learning in the field of organoid morphology analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI