GLMDriveNet: Global–local Multimodal Fusion Driving Behavior Classification Network

计算机科学 保险丝(电气) 光谱图 特征(语言学) 人工智能 一般化 频道(广播) 情态动词 水准点(测量) 嵌入 编码(集合论) 人工神经网络 模式识别(心理学) 计算机网络 工程类 程序设计语言 电气工程 地理 高分子化学 集合(抽象数据类型) 大地测量学 数学 化学 哲学 语言学 数学分析
作者
Wenzhuo Liu,Yan Gong,Guoying Zhang,J. Lu,Yunlai Zhou,Junbin Liao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107575-107575 被引量:3
标识
DOI:10.1016/j.engappai.2023.107575
摘要

Driving behavior classification plays an important role in many fields, such as Advanced Driving Assistance System (ADAS), traffic safety, and energy saving. In this paper, we propose a Global–local Multimodal Fusion Driving Behavior Classification Network (GLMDriveNet) which classifies driver behaviors into normal driving, aggressive driving, and drowsy driving. First of all, we design a Global–local Interaction Channel Attention Module (GLI-CAM) to extract effective features in both the roadside image and the spectrogram generated from the current prediction time and its previous four seconds of vehicle speeds. Furthermore, a learnable positional embedding is introduced to fuse the global and local information of the channels for better screening of the extracted features. Secondly, we propose a Multi-scale Feature Representation Fusion Module (MS-FRFM) to associate the high-scale and low-scale information of images and spectrograms and assign different importances for different modal information, making the network more inclined to useful modal information. Our model is evaluated on a public dataset UAH-DriveSet and achieves the best performance (98.4% F1-score on all roads, 97.4% F1-score on the motorway road, and 99.8% F1-score on the secondary road) compared to other state-of-the-art methods. Our model has a very fast speed (142 FPS) and strong generalization which has been verified through extensive experiments on multiple datasets. The code is available on https://github.com/liuwenzhuo1/GLMDrivenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
领导范儿应助单纯芮采纳,获得10
3秒前
HotnessK完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
火锅发布了新的文献求助10
4秒前
蔚111完成签到,获得积分10
4秒前
潇洒冰蓝完成签到,获得积分10
5秒前
Eternity完成签到,获得积分10
5秒前
尊敬仙人掌完成签到,获得积分10
5秒前
搜集达人应助小小月采纳,获得10
6秒前
6秒前
星辰大海应助超帅的鹏飞采纳,获得10
6秒前
热情的菲音完成签到,获得积分10
7秒前
蔚111发布了新的文献求助10
8秒前
8秒前
充电宝应助cj采纳,获得10
8秒前
共享精神应助supershiyi11采纳,获得10
9秒前
杨博发布了新的文献求助30
9秒前
9秒前
哈哈哈kk完成签到,获得积分10
10秒前
11秒前
彭于晏应助SMLW采纳,获得10
11秒前
kaly完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助YY采纳,获得10
13秒前
科目三应助旗树树采纳,获得10
14秒前
lin发布了新的文献求助10
14秒前
开朗问晴完成签到,获得积分10
15秒前
16秒前
顾矜应助flymove采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
傲娇的婷关注了科研通微信公众号
19秒前
熊本熊完成签到,获得积分10
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959007
求助须知:如何正确求助?哪些是违规求助? 3505322
关于积分的说明 11123366
捐赠科研通 3236970
什么是DOI,文献DOI怎么找? 1788969
邀请新用户注册赠送积分活动 871459
科研通“疑难数据库(出版商)”最低求助积分说明 802805