Ligand Exchange Adsorbents for Selective Phosphate and Total Ammonia Nitrogen Recovery from Wastewaters

吸附 化学 磷酸盐 废水 富营养化 营养物 污水处理 环境科学 环境化学 废物管理 环境工程 制浆造纸工业 有机化学 工程类
作者
Brandon Clark,Neha Sharma,Edward Apraku,Hang Dong,William A. Tarpeh
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (4): 492-504 被引量:5
标识
DOI:10.1021/accountsmr.3c00290
摘要

ConspectusHuman interference in natural biogeochemical cycles has caused an unprecedented input of reactive phosphorus and nitrogen nutrients into the environment, contributing to perturbations of natural aqueous ecosystems (e.g., eutrophication). Furthermore, industrial phosphorus mining and Haber–Bosch ammonia production contribute significantly to global energy expenditures and greenhouse gas emissions. Existing wastewater treatment techniques, particularly those based on adsorption processes, have predominantly concentrated on nutrient removal, underutilizing the potential for the subsequent recovery of pure products. Recovering these nutrients from wastewaters (e.g., municipal, industrial, agricultural) can supplement mining and fertilizer production, leading to energy and emissions savings and contributing to a more circular resource economy. In addition, nutrient recovery provides economic incentives to expand the implementation of water treatment, which exhibits additional benefits, such as global public health and environmental remediation. Phosphate and total ammonia nitrogen (i.e., TAN, the sum of ammonia and ammonium) are emphasized in this Account because they comprise substantial portions of reactive phosphorus and nitrogen.Adsorption-based wastewater treatment processes are promising due to their simple construction and maintenance, scalability, and cost-effectiveness. However, adsorption of phosphate and TAN is generally attained through ion exchange (electrostatic attraction), which is a nonselective interaction. Additionally, acid or base used for adsorbent regeneration contributes most of the embedded energy and greenhouse gas emissions of the adsorption process. If adsorption could achieve high target nutrient selectivity and regenerability, then valuable phosphate and TAN products could be recovered efficiently and economically. Because phosphate and ammonia are uniquely strong nucleophiles among wastewater species, leveraging ligand exchange (coordinate covalent bonding) can enhance selectivity against competing ions. Because phosphate and ammonia have mild pH speciation equilibria that can interrupt coordinate covalent bonds, acid or base input for adsorbent regeneration can be minimized, mitigating the major contributors to energy, emissions, and cost.In this Account, we summarize our recent work on two ligand exchange adsorbents: (1) a ferric oxide-loaded poly(vinylbenzyl trimethylammonium) strong base anion exchange resin for selective phosphate recovery from municipal wastewater and (2) a zinc polyacrylate weak acid cation exchange resin for selective TAN recovery from hydrolyzed urine. To maximize adsorbent selectivity, capacity, and regenerability without eluting the immobilized ligand exchange electrophile (i.e., ferric oxide and divalent zinc) from the adsorbent, all interactions between the solutes, electrophile, and support polymer must be carefully controlled to favor the desired bonds. To optimize resource efficiency and material design, electrochemical systems, and supplemental characterization techniques are also discussed. Electrochemical pH buffering and adsorbent regeneration can eliminate external acid and base input and minimize external salt requirements, further lowering operational costs, energy, and emissions. Synchrotron methods can analyze adsorbent bonding with high precision to understand coordination environments and inform adsorbent structure improvements. Finally, we provide a perspective on future directions, including design for complete wastewater treatment trains, future adsorbent materials, and other valuable wastewater constituents. In summary, selective nutrient recovery from wastewaters will be essential for chemical manufacturing and pollution mitigation in a sustainable society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pana发布了新的文献求助10
刚刚
科目三应助pp采纳,获得10
1秒前
卧云发布了新的文献求助10
2秒前
4秒前
小二郎应助cripple采纳,获得10
5秒前
6秒前
7秒前
欢呼孤容发布了新的文献求助10
8秒前
9秒前
Jokic完成签到,获得积分10
9秒前
玠岚发布了新的文献求助10
10秒前
跑在颖完成签到,获得积分20
13秒前
wsybf1314发布了新的文献求助10
13秒前
pp发布了新的文献求助10
15秒前
tomf完成签到,获得积分10
19秒前
思源应助tianhaizhi采纳,获得10
20秒前
30秒前
tianhaizhi完成签到,获得积分10
32秒前
QinW完成签到 ,获得积分10
34秒前
隐形八宝粥完成签到,获得积分10
37秒前
一川烟雨发布了新的文献求助10
38秒前
insideplus发布了新的文献求助10
38秒前
撞我心上你完成签到,获得积分10
39秒前
英俊枫完成签到 ,获得积分10
40秒前
wsybf1314完成签到,获得积分20
43秒前
insideplus完成签到,获得积分10
46秒前
英俊的铭应助wpz采纳,获得10
49秒前
ninomae完成签到 ,获得积分10
51秒前
一川烟雨完成签到,获得积分10
53秒前
积极灵枫完成签到,获得积分10
55秒前
ding应助Pana采纳,获得10
55秒前
小李同学完成签到,获得积分10
55秒前
56秒前
59秒前
anthea完成签到 ,获得积分10
59秒前
Nancy0818完成签到,获得积分10
59秒前
1分钟前
1分钟前
maomao1986完成签到,获得积分10
1分钟前
1分钟前
高分求助中
LNG地下式貯槽指針(JGA指-107-19)(Recommended practice for LNG inground storage) 1000
Second Language Writing (2nd Edition) by Ken Hyland, 2019 1000
Generalized Linear Mixed Models 第二版 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2921567
求助须知:如何正确求助?哪些是违规求助? 2564541
关于积分的说明 6936062
捐赠科研通 2221840
什么是DOI,文献DOI怎么找? 1181043
版权声明 588791
科研通“疑难数据库(出版商)”最低求助积分说明 577816