已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comprehensive performance evaluation, comparison, and integration of computational methods for detecting and estimating cross-contamination of human samples in cancer next-generation sequencing analysis

污染 计算机科学 Python(编程语言) 样品(材料) 计算生物学 数据挖掘 生物 生态学 化学 色谱法 操作系统
作者
Huijuan Chen,Bing Wang,Lili Cai,Xiaotian Yang,Yali Hu,Yiran Zhang,Xue Leng,Wen Liu,Dongjie Fan,Beifang Niu,Qiming Zhou
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:152: 104625-104625 被引量:1
标识
DOI:10.1016/j.jbi.2024.104625
摘要

Cross-sample contamination is one of the major issues in next-generation sequencing (NGS)-based molecular assays. This type of contamination, even at very low levels, can significantly impact the results of an analysis, especially in the detection of somatic alterations in tumor samples. Several contamination identification tools have been developed and implemented as a crucial quality-control step in the routine NGS bioinformatic pipeline. However, no study has been published to comprehensively and systematically investigate, evaluate, and compare these computational methods in the cancer NGS analysis. In this study, we comprehensively investigated nine state-of-the-art computational methods for detecting cross-sample contamination. To explore their application in cancer NGS analysis, we further compared the performance of five representative tools by qualitative and quantitative analyses using in silico and simulated experimental NGS data. The results showed that Conpair achieved the best performance for identifying contamination and predicting the level of contamination in solid tumors NGS analysis. Moreover, based on Conpair, we developed a Python script, Contamination Source Predictor (ConSPr), to identify the source of contamination. We anticipate that this comprehensive survey and the proposed tool for predicting the source of contamination will assist researchers in selecting appropriate cross-contamination detection tools in cancer NGS analysis and inspire the development of computational methods for detecting sample cross-contamination and identifying its source in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的芸遥完成签到 ,获得积分10
1秒前
2秒前
3秒前
33发布了新的文献求助20
4秒前
科研通AI6.1应助Yuanyuan采纳,获得10
4秒前
Yu完成签到,获得积分10
6秒前
阵雨发布了新的文献求助10
7秒前
SciGPT应助33采纳,获得10
7秒前
yuyu发布了新的文献求助10
8秒前
liuyingjuan829完成签到,获得积分20
10秒前
寻道图强应助highkick采纳,获得50
11秒前
科研通AI6.1应助lkl采纳,获得10
14秒前
阵雨完成签到,获得积分10
14秒前
隐形曼青应助宁过儿采纳,获得20
14秒前
momo关注了科研通微信公众号
17秒前
18秒前
19秒前
无花果应助灵芝采纳,获得20
19秒前
20秒前
21秒前
ADJ完成签到,获得积分10
21秒前
Akim应助xhc采纳,获得10
23秒前
下雨天发布了新的文献求助10
23秒前
bkagyin应助晚棠采纳,获得10
23秒前
自由的晓夏完成签到,获得积分10
24秒前
阳阳发布了新的文献求助10
25秒前
Yuanyuan发布了新的文献求助10
26秒前
27秒前
momo发布了新的文献求助10
27秒前
隐形曼青应助无水乙醚采纳,获得10
27秒前
完美世界应助林高扬采纳,获得10
27秒前
CTL完成签到,获得积分10
28秒前
大个应助超级野狼采纳,获得10
28秒前
28秒前
guo完成签到 ,获得积分10
28秒前
所所应助风中小夏采纳,获得10
29秒前
cyy完成签到,获得积分10
29秒前
BowieHuang应助江水边采纳,获得10
30秒前
30秒前
典雅思真发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387