A comprehensive performance evaluation, comparison, and integration of computational methods for detecting and estimating cross-contamination of human samples in cancer next-generation sequencing analysis

污染 计算机科学 Python(编程语言) 样品(材料) 计算生物学 数据挖掘 生物 生态学 化学 色谱法 操作系统
作者
Huijuan Chen,Bing Wang,Lili Cai,Xiaotian Yang,HU Ya-li,Yiran Zhang,Xue Leng,Wen Liu,Dongjie Fan,Beifang Niu,Qiming Zhou
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:152: 104625-104625
标识
DOI:10.1016/j.jbi.2024.104625
摘要

Cross-sample contamination is one of the major issues in next-generation sequencing (NGS)-based molecular assays. This type of contamination, even at very low levels, can significantly impact the results of an analysis, especially in the detection of somatic alterations in tumor samples. Several contamination identification tools have been developed and implemented as a crucial quality-control step in the routine NGS bioinformatic pipeline. However, no study has been published to comprehensively and systematically investigate, evaluate, and compare these computational methods in the cancer NGS analysis. In this study, we comprehensively investigated nine state-of-the-art computational methods for detecting cross-sample contamination. To explore their application in cancer NGS analysis, we further compared the performance of five representative tools by qualitative and quantitative analyses using in silico and simulated experimental NGS data. The results showed that Conpair achieved the best performance for identifying contamination and predicting the level of contamination in solid tumors NGS analysis. Moreover, based on Conpair, we developed a Python script, Contamination Source Predictor (ConSPr), to identify the source of contamination. We anticipate that this comprehensive survey and the proposed tool for predicting the source of contamination will assist researchers in selecting appropriate cross-contamination detection tools in cancer NGS analysis and inspire the development of computational methods for detecting sample cross-contamination and identifying its source in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
1秒前
斯文败类应助麦苗果果采纳,获得10
3秒前
3秒前
5秒前
xxx完成签到,获得积分10
6秒前
7秒前
文艺花生发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
flymove发布了新的文献求助10
10秒前
五山第一院士完成签到,获得积分10
10秒前
11秒前
12秒前
隐形曼青应助酷炫鑫采纳,获得10
12秒前
石语芙发布了新的文献求助10
12秒前
sskaze完成签到 ,获得积分10
14秒前
小南发布了新的文献求助10
16秒前
17秒前
跳跃的问玉完成签到,获得积分20
19秒前
石语芙完成签到,获得积分10
19秒前
拉长的板凳完成签到,获得积分10
23秒前
27秒前
无花果应助小南采纳,获得10
28秒前
CodeCraft应助舒心健柏采纳,获得10
29秒前
journey完成签到 ,获得积分10
30秒前
31秒前
THEO发布了新的文献求助10
34秒前
34秒前
34秒前
沐mu发布了新的文献求助10
35秒前
华仔应助吴啊采纳,获得10
36秒前
zhuzhu发布了新的文献求助30
38秒前
DrMaghrabi完成签到,获得积分10
40秒前
冷静的无颜完成签到,获得积分10
42秒前
43秒前
丘比特应助zhuzhu采纳,获得10
44秒前
NexusExplorer应助hlx采纳,获得10
45秒前
ding应助oceana采纳,获得10
46秒前
46秒前
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844