A comprehensive performance evaluation, comparison, and integration of computational methods for detecting and estimating cross-contamination of human samples in cancer next-generation sequencing analysis

污染 计算机科学 Python(编程语言) 样品(材料) 计算生物学 数据挖掘 生物 生态学 化学 色谱法 操作系统
作者
Huijuan Chen,Bing Wang,Lili Cai,Xiaotian Yang,Yali Hu,Yiran Zhang,Xue Leng,Wen Liu,Dongjie Fan,Beifang Niu,Qiming Zhou
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:152: 104625-104625 被引量:1
标识
DOI:10.1016/j.jbi.2024.104625
摘要

Cross-sample contamination is one of the major issues in next-generation sequencing (NGS)-based molecular assays. This type of contamination, even at very low levels, can significantly impact the results of an analysis, especially in the detection of somatic alterations in tumor samples. Several contamination identification tools have been developed and implemented as a crucial quality-control step in the routine NGS bioinformatic pipeline. However, no study has been published to comprehensively and systematically investigate, evaluate, and compare these computational methods in the cancer NGS analysis. In this study, we comprehensively investigated nine state-of-the-art computational methods for detecting cross-sample contamination. To explore their application in cancer NGS analysis, we further compared the performance of five representative tools by qualitative and quantitative analyses using in silico and simulated experimental NGS data. The results showed that Conpair achieved the best performance for identifying contamination and predicting the level of contamination in solid tumors NGS analysis. Moreover, based on Conpair, we developed a Python script, Contamination Source Predictor (ConSPr), to identify the source of contamination. We anticipate that this comprehensive survey and the proposed tool for predicting the source of contamination will assist researchers in selecting appropriate cross-contamination detection tools in cancer NGS analysis and inspire the development of computational methods for detecting sample cross-contamination and identifying its source in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助彩虹采纳,获得10
刚刚
香蕉觅云应助ljh采纳,获得10
刚刚
领导范儿应助李lailai采纳,获得10
1秒前
1秒前
彳山一完成签到,获得积分10
2秒前
难见春发布了新的文献求助10
2秒前
luyulin发布了新的文献求助10
3秒前
华仔应助蒙哥卡恩采纳,获得10
3秒前
kaka完成签到,获得积分10
3秒前
英俊的铭应助迅速冬天采纳,获得10
3秒前
申腾达发布了新的文献求助10
4秒前
health__up发布了新的文献求助10
4秒前
wxl发布了新的文献求助10
4秒前
5秒前
YouY0123发布了新的文献求助50
6秒前
6秒前
MingQue完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
田様应助111采纳,获得10
9秒前
9秒前
搜集达人应助112我的采纳,获得10
9秒前
10秒前
汉堡包应助小乔采纳,获得10
10秒前
今后应助眯眯眼的安雁采纳,获得30
10秒前
Akim应助shinn采纳,获得10
11秒前
irene应助难见春采纳,获得10
12秒前
机灵柚子发布了新的文献求助10
12秒前
郝好东完成签到,获得积分20
12秒前
素人渔夫完成签到,获得积分10
12秒前
旺仔完成签到,获得积分10
12秒前
tian完成签到,获得积分10
13秒前
ChenLan发布了新的文献求助10
13秒前
贴贴完成签到,获得积分10
13秒前
14秒前
神奇的种子完成签到,获得积分10
14秒前
天天快乐应助矮小的向雪采纳,获得10
14秒前
贾学冲发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234