Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases

特征(语言学) 计算机科学 人工智能 滤波器(信号处理) 模式识别(心理学) 特征提取 棱锥(几何) 比例(比率) 数据挖掘 计算机视觉 数学 哲学 语言学 物理 几何学 量子力学
作者
Yifei Chen,Chenyan Zhang,Ben Chen,Yiyu Huang,Yifei Sun,Changmiao Wang,Xianjun Fu,Yuxiang Dai,Feiwei Qin,Yong Peng,Yu Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107917-107917 被引量:13
标识
DOI:10.1016/j.compbiomed.2024.107917
摘要

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. Contemporary leukocyte detection methods exhibit limitations in dealing with images with fewer leukocyte features and the disparity in scale among different leukocytes, leading to unsatisfactory results in most instances. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
好学者完成签到 ,获得积分10
1秒前
谨慎不二发布了新的文献求助10
6秒前
xiaojcom完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
biopig应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
ss完成签到 ,获得积分20
11秒前
11秒前
蛋壳柯完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
14秒前
xubee完成签到,获得积分10
15秒前
qq完成签到,获得积分10
15秒前
谨慎不二完成签到,获得积分10
16秒前
乐乐应助jiangjiang采纳,获得10
17秒前
blossoms完成签到 ,获得积分10
17秒前
司南完成签到 ,获得积分10
18秒前
19秒前
athena发布了新的文献求助30
19秒前
小志呀发布了新的文献求助10
19秒前
19秒前
19秒前
学术大白完成签到 ,获得积分10
23秒前
24秒前
旦斯特尼发布了新的文献求助10
24秒前
彭云峰发布了新的文献求助10
25秒前
25秒前
jie完成签到 ,获得积分10
25秒前
25秒前
27秒前
娇咩咩发布了新的文献求助10
27秒前
英姑应助你命网友采纳,获得10
27秒前
29秒前
oboul发布了新的文献求助10
30秒前
30秒前
阿盛完成签到,获得积分10
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825