已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases

特征(语言学) 计算机科学 人工智能 滤波器(信号处理) 模式识别(心理学) 特征提取 棱锥(几何) 比例(比率) 数据挖掘 计算机视觉 数学 哲学 语言学 物理 几何学 量子力学
作者
Yifei Chen,Chenyan Zhang,Ben Chen,Yiyu Huang,Yifei Sun,Changmiao Wang,Xianjun Fu,Yuxing Dai,Feiwei Qin,Yong Peng,Yu Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107917-107917 被引量:54
标识
DOI:10.1016/j.compbiomed.2024.107917
摘要

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. Contemporary leukocyte detection methods exhibit limitations in dealing with images with fewer leukocyte features and the disparity in scale among different leukocytes, leading to unsatisfactory results in most instances. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Percy完成签到 ,获得积分10
5秒前
Owen应助小乔采纳,获得10
5秒前
小海贼完成签到 ,获得积分0
7秒前
桐桐应助宇文宛菡采纳,获得10
9秒前
大意的蛋挞完成签到,获得积分10
11秒前
华仔应助lorenz采纳,获得10
13秒前
ikea1984发布了新的文献求助10
19秒前
21秒前
John完成签到 ,获得积分10
22秒前
共享精神应助明亮无颜采纳,获得10
23秒前
懒大王完成签到 ,获得积分10
25秒前
29秒前
英姑应助乐橙采纳,获得10
29秒前
Grayball应助科研通管家采纳,获得10
32秒前
迟大猫应助科研通管家采纳,获得10
32秒前
正直天佑应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
huiya应助科研通管家采纳,获得10
32秒前
wanci应助科研通管家采纳,获得10
32秒前
Lucas应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
32秒前
huiya应助科研通管家采纳,获得10
32秒前
Grayball应助科研通管家采纳,获得10
33秒前
Grayball应助科研通管家采纳,获得10
33秒前
33秒前
Grayball应助科研通管家采纳,获得10
33秒前
Grayball应助科研通管家采纳,获得10
33秒前
Grayball应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
33秒前
王逗逗发布了新的文献求助10
35秒前
35秒前
37秒前
handsomecat完成签到,获得积分10
37秒前
liuguoqing发布了新的文献求助10
38秒前
爆米花应助LSS采纳,获得10
39秒前
明亮无颜发布了新的文献求助10
40秒前
乐橙发布了新的文献求助10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962