亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases

特征(语言学) 计算机科学 人工智能 滤波器(信号处理) 模式识别(心理学) 特征提取 棱锥(几何) 比例(比率) 数据挖掘 计算机视觉 数学 哲学 语言学 物理 几何学 量子力学
作者
Yifei Chen,Chenyan Zhang,Ben Chen,Yiyu Huang,Yifei Sun,Changmiao Wang,Xianjun Fu,Yuxing Dai,Feiwei Qin,Yong Peng,Yu Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107917-107917 被引量:147
标识
DOI:10.1016/j.compbiomed.2024.107917
摘要

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. Contemporary leukocyte detection methods exhibit limitations in dealing with images with fewer leukocyte features and the disparity in scale among different leukocytes, leading to unsatisfactory results in most instances. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星落枝头发布了新的文献求助10
1秒前
清爽夜雪完成签到,获得积分10
2秒前
3秒前
明人不放暗屁完成签到 ,获得积分10
3秒前
科研小趴菜完成签到 ,获得积分10
4秒前
6秒前
7秒前
123456完成签到,获得积分10
8秒前
一二完成签到 ,获得积分10
10秒前
11秒前
123456发布了新的文献求助10
12秒前
科研通AI5应助机灵的成协采纳,获得10
13秒前
Bell完成签到,获得积分10
15秒前
研友_VZG7GZ应助酷炫的面包采纳,获得10
16秒前
金鱼发布了新的文献求助10
18秒前
23秒前
桐桐应助北林采纳,获得10
25秒前
核桃应助ff相信好事来临采纳,获得10
27秒前
张张发布了新的文献求助10
29秒前
金鱼完成签到,获得积分10
30秒前
Perry完成签到,获得积分10
35秒前
38秒前
41秒前
激动的鹰发布了新的文献求助10
42秒前
lk完成签到,获得积分10
43秒前
Wxt完成签到 ,获得积分10
43秒前
Owen应助科研通管家采纳,获得10
46秒前
GPTea应助科研通管家采纳,获得20
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
lk发布了新的文献求助10
46秒前
ANG完成签到 ,获得积分10
52秒前
nano完成签到 ,获得积分10
53秒前
本征值完成签到 ,获得积分20
57秒前
chenwang发布了新的文献求助10
59秒前
研友_ZragOn完成签到,获得积分10
1分钟前
1分钟前
干饭大大大大大王完成签到,获得积分10
1分钟前
chenwang完成签到,获得积分20
1分钟前
宋宋完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126569
求助须知:如何正确求助?哪些是违规求助? 4330013
关于积分的说明 13492609
捐赠科研通 4165224
什么是DOI,文献DOI怎么找? 2283306
邀请新用户注册赠送积分活动 1284279
关于科研通互助平台的介绍 1223910