Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases

特征(语言学) 计算机科学 人工智能 滤波器(信号处理) 模式识别(心理学) 特征提取 棱锥(几何) 比例(比率) 数据挖掘 计算机视觉 数学 几何学 语言学 量子力学 物理 哲学
作者
Yifei Chen,Chenyan Zhang,Ben Chen,Yiyu Huang,Yifei Sun,Changmiao Wang,Xianjun Fu,Yuxing Dai,Feiwei Qin,Yong Peng,Yu Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107917-107917 被引量:93
标识
DOI:10.1016/j.compbiomed.2024.107917
摘要

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. Contemporary leukocyte detection methods exhibit limitations in dealing with images with fewer leukocyte features and the disparity in scale among different leukocytes, leading to unsatisfactory results in most instances. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LAIII完成签到,获得积分10
刚刚
aylwtt发布了新的文献求助10
刚刚
whyhanano完成签到,获得积分10
1秒前
贾世冰发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
4秒前
4秒前
英俊的铭应助封尘逸动采纳,获得10
4秒前
卞卞发布了新的文献求助10
5秒前
清爽问夏发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
积极彩虹完成签到,获得积分10
6秒前
小布完成签到 ,获得积分0
6秒前
7秒前
7秒前
8秒前
8秒前
Rutin发布了新的文献求助10
8秒前
苹果颖发布了新的文献求助10
9秒前
卡卡发布了新的文献求助10
9秒前
在水一方应助phraly采纳,获得10
9秒前
害羞书易发布了新的文献求助10
10秒前
10秒前
fengpu完成签到,获得积分10
10秒前
Elvis完成签到,获得积分10
10秒前
11秒前
11秒前
整齐画板发布了新的文献求助10
12秒前
Ki_Ayasato完成签到,获得积分10
12秒前
RPG完成签到,获得积分10
12秒前
帕芙芙发布了新的文献求助20
13秒前
情怀应助Skuld采纳,获得10
13秒前
顾矜应助lhh采纳,获得10
13秒前
14秒前
小徐完成签到,获得积分10
14秒前
沉静幻天发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723