Effect of Interfacial Action on the Generation and Transformation of Reactive Oxygen Species in Tripolyphosphate-Enhanced Heterogeneous Fe3O4/O2 Systems

化学 氧气 磁铁矿 水溶液 产量(工程) 无机化学 物理化学 材料科学 有机化学 冶金
作者
Chengwu Zhang,Chuipeng Kong,Paul G. Tratnyek,Chuanyu Qin,Yongsheng Zhao,Yunxian Piao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (2): 1378-1389 被引量:38
标识
DOI:10.1021/acs.est.3c07372
摘要

It has been reported that tripolyphosphate (TPP) can enhance the oxygenation of natural Fe(II)-containing minerals to produce reactive oxygen species (ROS). However, the molecular structure of the TPP-Fe(II) mineral surface complex and the role of this complex in the generation and transformation of ROS have not been fully characterized. In the present study, a heterogeneous magnetite (Fe3O4)/O2/TPP system was developed for the degradation of p-nitrophenol (PNP). The results showed that the addition of TPP significantly accelerated the removal of PNP in the Fe3O4/O2 system and extended the range of effective pH to neutral. Experiments combined with density functional theory calculations revealed that the activation of O2 mainly occurs on the surface of Fe3O4 induced by a structural Fe(II)-TPP complex, where the generated O2•- (intermediate active species) can be rapidly converted into H2O2, and then the •OH generated by the Fenton reaction is released into the solution. This increases the concentration of •OH produced and the efficiency of •OH produced relative to Fe(II) consumed, compared with the homogeneous system. Furthermore, the binding of TPP to the surface of Fe3O4 led to stretching and even cleavage of the Fe-O bonds. Consequently, more Fe(II)/(III) atoms are exposed to the solvation environment and are available for the binding of active O2 and O2•-. This study demonstrates how common iron minerals and O2 in the natural environment can be combined to yield a green remediation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦一德完成签到,获得积分10
刚刚
Scorpio发布了新的文献求助30
刚刚
puyute完成签到,获得积分10
刚刚
Mavis完成签到,获得积分10
1秒前
dynamoo完成签到,获得积分10
1秒前
hwq发布了新的文献求助80
2秒前
九月完成签到,获得积分10
2秒前
2秒前
hff发布了新的文献求助10
3秒前
JACS_Accepted完成签到,获得积分10
3秒前
易只瑜发布了新的文献求助30
4秒前
ly完成签到,获得积分10
5秒前
承乐应助科研畅行采纳,获得10
7秒前
科研通AI2S应助wei采纳,获得10
8秒前
8秒前
8秒前
小二郎应助小甜采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
研友_屈不愁完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
giao完成签到,获得积分10
11秒前
落后的静曼完成签到,获得积分10
12秒前
好名字发布了新的文献求助10
13秒前
吧唧吧唧发布了新的文献求助10
13秒前
李俊杰发布了新的文献求助30
14秒前
香蕉觅云应助fanatic采纳,获得10
14秒前
14秒前
TIAMO发布了新的文献求助10
14秒前
16秒前
滴滴哒发布了新的文献求助30
16秒前
16秒前
科研通AI6应助月星采纳,获得10
17秒前
18秒前
孟祥飞发布了新的文献求助20
19秒前
科研小白完成签到,获得积分10
19秒前
20秒前
啦啦发布了新的文献求助10
20秒前
jingxu完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802