已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Depicting Risk Profile over Time: A Novel Multiperiod Loan Default Prediction Approach

计算机科学 违约概率 违约损失 信用风险 违约 贷款 计量经济学 盈利能力指数 概率逻辑 可识别性 机器学习 精算学 人工智能 经济 资本要求 财务 激励 微观经济学
作者
Zhao Wang,Cuiqing Jiang,Huimin Zhao
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:47 (4): 1455-1486 被引量:5
标识
DOI:10.25300/misq/2022/17491
摘要

With the rapid development of fintech, the need for dynamic credit risk evaluation is becoming increasingly important. While previous studies on credit scoring have mostly focused on single-period loan default prediction, we call for a new avenue—multiperiod default prediction (MPDP)—to depict risk profiles over time. To address the challenges raised by MPDP, such as monotonic default probability prediction and complex relationship accommodation, we propose a novel approach, hybrid and collective scoring (HACS). We design a hybrid modeling strategy to predict whether and when a borrower will default separately through a default discrimination model and a default time estimation model, respectively, and synthesize them through a probabilistic framework. To accommodate various possible patterns of default time and measure the distribution of default probability over successive time intervals, we propose a joint default modeling method to train the default time estimation model. Empirical evaluations at the model (time-to-default prediction performance and discrimination performance) and mechanism (identifiability and discriminability) levels, as well as impact analyses at the application (granting performance and profitability performance) level, show that HACS outperforms the benchmarked survival analysis and multilabel learning methods on all fronts. It can more accurately predict time-to-default and provide financial institutions and investors better decision-support in granting loans and selecting loan portfolios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
dinghaifeng完成签到,获得积分10
3秒前
小黄发布了新的文献求助10
3秒前
3秒前
舒适沛儿完成签到,获得积分10
4秒前
Jenkin完成签到,获得积分10
6秒前
Eve发布了新的文献求助10
6秒前
希望天下0贩的0应助小帕采纳,获得10
6秒前
krisliu发布了新的文献求助10
7秒前
我是老大应助augenstern采纳,获得10
10秒前
10秒前
传奇3应助顺心的舞蹈采纳,获得10
12秒前
12秒前
科研通AI5应助haui采纳,获得10
13秒前
郑郑发布了新的文献求助10
13秒前
Nina完成签到 ,获得积分10
15秒前
平淡的小丸子完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
17秒前
18秒前
21秒前
小帕发布了新的文献求助10
22秒前
肃清夏安完成签到,获得积分10
23秒前
Akim应助王诗瑶采纳,获得30
25秒前
成就的绮烟完成签到 ,获得积分10
26秒前
27秒前
Ava应助kyou采纳,获得10
27秒前
隐形曼青应助满意的大雁采纳,获得10
27秒前
Eve发布了新的文献求助10
28秒前
29秒前
29秒前
32秒前
33秒前
YaGue发布了新的文献求助10
34秒前
35秒前
qyz发布了新的文献求助10
35秒前
36秒前
36秒前
augenstern完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733271
求助须知:如何正确求助?哪些是违规求助? 3277434
关于积分的说明 10002612
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780555
科研通“疑难数据库(出版商)”最低求助积分说明 748892