Enhancing Out-of-distribution Generalization on Graphs via Causal Attention Learning

一般化 虚假关系 联营 分类器(UML) 因果模型 计算机科学 突出 图形 特征(语言学) 人工智能 因果结构 机器学习 数学 数据挖掘 理论计算机科学 统计 数学分析 语言学 哲学 物理 量子力学
作者
Yongduo Sui,Wenyu Mao,Shuyao Wang,Xiang Wang,Jiancan Wu,Xiangnan He,Tat‐Seng Chua
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-24
标识
DOI:10.1145/3644392
摘要

In graph classification, attention- and pooling-based graph neural networks (GNNs) predominate to extract salient features from the input graph and support the prediction. They mostly follow the paradigm of “learning to attend,” which maximizes the mutual information between the attended graph and the ground-truth label. However, this paradigm causes GNN classifiers to indiscriminately absorb all statistical correlations between input features and labels in the training data without distinguishing the causal and noncausal effects of features. Rather than emphasizing causal features, the attended graphs tend to rely on noncausal features as shortcuts to predictions. These shortcut features may easily change outside the training distribution, thereby leading to poor generalization for GNN classifiers. In this article, we take a causal view on GNN modeling. Under our causal assumption, the shortcut feature serves as a confounder between the causal feature and prediction. It misleads the classifier into learning spurious correlations that facilitate prediction in in-distribution (ID) test evaluation while causing significant performance drop in out-of-distribution (OOD) test data. To address this issue, we employ the backdoor adjustment from causal theory—combining each causal feature with various shortcut features, to identify causal patterns and mitigate the confounding effect. Specifically, we employ attention modules to estimate the causal and shortcut features of the input graph. Then, a memory bank collects the estimated shortcut features, enhancing the diversity of shortcut features for combination. Simultaneously, we apply the prototype strategy to improve the consistency of intra-class causal features. We term our method as CAL+, which can promote stable relationships between causal estimation and prediction, regardless of distribution changes. Extensive experiments on synthetic and real-world OOD benchmarks demonstrate our method’s effectiveness in improving OOD generalization. Our codes are released at https://github.com/shuyao-wang/CAL-plus .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Jie采纳,获得10
刚刚
李振华完成签到,获得积分10
刚刚
无影灯完成签到,获得积分10
1秒前
默幻弦完成签到,获得积分10
2秒前
英姑应助Yang_Yuting采纳,获得30
2秒前
3秒前
fqpang完成签到 ,获得积分10
3秒前
NexusExplorer应助yoyo采纳,获得10
3秒前
4秒前
李振华发布了新的文献求助10
4秒前
7秒前
小白发布了新的文献求助10
8秒前
8秒前
hz发布了新的文献求助10
9秒前
9秒前
9秒前
Jie完成签到,获得积分10
9秒前
concentrate发布了新的文献求助10
10秒前
gujianhua完成签到,获得积分10
12秒前
12秒前
Jie发布了新的文献求助10
12秒前
juziyaya发布了新的文献求助50
13秒前
13秒前
14秒前
在水一方应助hz采纳,获得10
14秒前
hail发布了新的文献求助10
15秒前
yoyo发布了新的文献求助10
15秒前
JamesPei应助落雁采纳,获得10
16秒前
酷波er应助ldysaber采纳,获得10
16秒前
16秒前
奋斗的觅山完成签到,获得积分10
16秒前
欧阳静芙完成签到,获得积分10
17秒前
17秒前
聂难敌发布了新的文献求助10
18秒前
setmefree发布了新的文献求助10
18秒前
咸鱼有梦想完成签到,获得积分20
19秒前
满姣发布了新的文献求助10
22秒前
22秒前
小蘑菇应助超级火龙果采纳,获得10
24秒前
墨沁发布了新的文献求助10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226