亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing fusarium head blight detection in wheat crops using hyperspectral indices and machine learning classifiers

高光谱成像 镰刀菌 人工智能 农学 模式识别(心理学) 计算机科学 机器学习 数学 农业工程 工程类 生物 园艺
作者
Ghulam Mustafa,Hengbiao Zheng,İmran Khan,Jie Zhu,Tao Yang,Aiguo Wang,Bowen Xue,Can He,Haiyan Jia,Guoqiang Li,Tao Cheng,Weixing Cao,Yan Zhu,Xia Yao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108663-108663 被引量:6
标识
DOI:10.1016/j.compag.2024.108663
摘要

Fusarium head blight (FHB) pathogen jeopardizes the quality and yield of wheat crops at critical grain formation stages. Given these, the capability of near-infrared hyperspectral imaging and non-imaging data was explored to develop wheat fusarium spectral indices (WFSI) and wheat fusarium texture indices (WFTI) on independent three-year datasets using consistently selected wavelet features (WFs) and texture features (TFs). Subsequently, five classifiers – Knn, RF, SVM, NN and Xgboost – were employed to fully explore the selected features and evaluate the newly developed indices for FHB classification accuracy. The frequent measurement results indicated that the biochemical and spectral changes were consistent for whole spike-pathogen interaction with the development of FHB. At the pre-symptomatic scale, the WFSI1, WFSI2, WFTI1, and WFTI2 individually demonstrated the average classification accuracy (ACA) in all classifiers of 78.90 %, 72.0 %, 73.60 %, and 71.0 %, respectively. At the disease scale (DS) two (3–5 % disease prevalence), the ACA of WFSI1, WFSI2, WFTI1, and WFTI2 increased to 90.10 %, 90.30 %, 88.10 %, and 85.40 %, respectively, for imaging data. Furthermore, the fusion of all four developed indices in 2019, 2020, and 2021 showed enhanced ACA of 79.05 %, 76.75 % and 78.59 %, respectively. The ACA of the fused four developed indices in the three years increased to 98.06 %, 89.68 % and 94.83 % at DS2, respectively, and for higher DS (10–100 % disease prevalence) also exhibited higher accuracy. Among all the classifiers, neural net (NN) performed better after Xgboost. The developed indices were also employed and successfully proved on independent datasets acquired from imaging and non-imaging sensors. This work reveals the promising implementation of hyperspectral information in improving FHB early monitoring in precision agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMMMeng完成签到,获得积分10
4秒前
共享精神应助wizardz采纳,获得10
12秒前
14秒前
14秒前
李成金发布了新的文献求助10
19秒前
搞怪翠霜发布了新的文献求助10
19秒前
22秒前
陈陈陈完成签到 ,获得积分10
24秒前
城南烤地瓜完成签到 ,获得积分10
25秒前
wizardz发布了新的文献求助10
27秒前
29秒前
牙线棒棒哒完成签到 ,获得积分10
29秒前
29秒前
上官若男应助070329采纳,获得10
31秒前
33秒前
33秒前
39秒前
rose发布了新的文献求助10
44秒前
46秒前
49秒前
肥肥猪发布了新的文献求助10
53秒前
搞怪翠霜完成签到,获得积分10
54秒前
Rational完成签到,获得积分10
57秒前
1分钟前
1分钟前
肥肥猪完成签到,获得积分10
1分钟前
tufei发布了新的文献求助10
1分钟前
GC发布了新的文献求助10
1分钟前
怕黑鲂完成签到 ,获得积分10
1分钟前
djam发布了新的文献求助10
1分钟前
科研通AI5应助zws采纳,获得10
1分钟前
rose发布了新的文献求助10
1分钟前
Owen应助外向含之采纳,获得10
1分钟前
李健应助djam采纳,获得10
1分钟前
科研通AI5应助西西弗采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
光亮的自行车完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681573
求助须知:如何正确求助?哪些是违规求助? 3233445
关于积分的说明 9808861
捐赠科研通 2944913
什么是DOI,文献DOI怎么找? 1615017
邀请新用户注册赠送积分活动 762495
科研通“疑难数据库(出版商)”最低求助积分说明 737393