亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A collaborative energy management strategy based on multi-agent reinforcement learning for fuel cell hybrid electric vehicles

强化学习 能源管理 计算机科学 趋同(经济学) 能源消耗 燃料效率 人工智能 数学优化 能量(信号处理) 汽车工程 工程类 数学 经济增长 统计 电气工程 经济
作者
Yao Xiao,Shengxiang Fu,Jong-Woo Choi,Chunhua Zheng
标识
DOI:10.1109/vtc2023-fall60731.2023.10333636
摘要

Deep reinforcement learning (DRL) algorithms have been applied to energy management strategies (EMSs) of hybrid vehicles recently with the development of artificial intelligence. However, the unstable training and inherent lower collaboration ability among agents hinder the application, especially when being faced with complicated control problems. In this research, a novel DRL algorithm, i.e. the multi-agent deep deterministic policy gradient (MADDPG) is applied to a fuel cell hybrid electric vehicle (FCHEV) with the centralized training and decentralized execution (CTDE) framework, where a more detailed reward function is designed to enable a fast and stable convergence. In order to evaluate the effectiveness, the proposed strategy is compared to the dynamic programming (DP)-based, the rule-based and the deep deterministic policy gradient (DDPG)-based EMSs in terms of the energy consumption and SOC maintenance. Results show that the proposed MADDPG-based EMS coordinates the output power of different power sources more effectively and outperforms the DDPG-based EMS in equivalent hydrogen consumption up to 5.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助石榴汁的书采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
肥猪完成签到,获得积分10
12秒前
赘婿应助Zhao0112采纳,获得10
15秒前
18秒前
18秒前
25秒前
陈毅发布了新的文献求助10
29秒前
吴端完成签到,获得积分10
29秒前
37秒前
41秒前
45秒前
PP发布了新的文献求助10
47秒前
52秒前
耿双贵发布了新的文献求助30
56秒前
58秒前
Suu完成签到,获得积分10
1分钟前
1分钟前
不可靠的黏菌完成签到,获得积分10
1分钟前
铜锣烧完成签到 ,获得积分10
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
852应助张家宁采纳,获得10
1分钟前
耿双贵完成签到,获得积分20
1分钟前
1分钟前
白华苍松发布了新的文献求助20
1分钟前
烟消云散发布了新的文献求助80
1分钟前
haipronl应助Bowman采纳,获得50
1分钟前
Lucas应助烟消云散采纳,获得10
2分钟前
壮观的谷冬完成签到 ,获得积分0
2分钟前
渥鸡蛋完成签到 ,获得积分10
2分钟前
情怀应助wzc采纳,获得10
2分钟前
2分钟前
2分钟前
烟消云散发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765