ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation

图像分割 人工智能 计算机科学 编码器 卷积神经网络 分割 变压器 深度学习 尺度空间分割 模式识别(心理学) 电压 物理 量子力学 操作系统
作者
Zihan Li,Yuan Zheng,Dandan Shan,Shuzhou Yang,Qingde Li,Beizhan Wang,Yuan‐Ting Zhang,Qingqi Hong,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:10
标识
DOI:10.1109/tmi.2024.3363190
摘要

Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model’s performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点完成签到,获得积分10
刚刚
科研通AI2S应助11采纳,获得10
2秒前
情怀应助JERRI采纳,获得10
4秒前
5秒前
liweiDr发布了新的文献求助10
5秒前
5秒前
暖宝宝发布了新的文献求助30
5秒前
Ava应助晚云烟月采纳,获得10
6秒前
龙虾发票发布了新的文献求助10
8秒前
karL完成签到,获得积分10
9秒前
赘婿应助丢丢采纳,获得10
10秒前
10秒前
Vesperus发布了新的文献求助20
10秒前
啦啦完成签到 ,获得积分10
12秒前
13秒前
13秒前
16秒前
彭于晏应助田一点采纳,获得10
17秒前
17秒前
无心的笑蓝完成签到,获得积分10
18秒前
zyx关闭了zyx文献求助
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
Hello应助点点采纳,获得10
20秒前
23秒前
23秒前
晚夜微雨发布了新的文献求助10
24秒前
LRK发布了新的文献求助10
24秒前
Vesperus完成签到,获得积分20
24秒前
自由文博完成签到 ,获得积分10
24秒前
丢丢发布了新的文献求助10
25秒前
26秒前
桐桐应助阿尼亚采纳,获得10
26秒前
27秒前
28秒前
陶醉的婴发布了新的文献求助10
29秒前
FashionBoy应助hanleiharry1采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102