ScribFormer: Transformer Makes CNN Work Better for Scribble-Based Medical Image Segmentation

图像分割 人工智能 计算机科学 计算机视觉 分割 变压器 医学影像学 尺度空间分割 模式识别(心理学) 工程类 电压 电气工程
作者
Zihan Li,Yuan Zheng,Dandan Shan,Shuzhou Yang,Qingde Li,Beizhan Wang,Yuan‐Ting Zhang,Qingqi Hong,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2254-2265 被引量:30
标识
DOI:10.1109/tmi.2024.3363190
摘要

Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model's performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liujian完成签到,获得积分10
刚刚
隐形曼青应助淡淡夕阳采纳,获得10
1秒前
1秒前
jkdzp发布了新的文献求助10
2秒前
Mountain_Y发布了新的文献求助30
2秒前
3秒前
3秒前
linkman发布了新的文献求助10
6秒前
丘比特应助嘴巴张大一点采纳,获得10
7秒前
橙子发布了新的文献求助10
8秒前
nan发布了新的文献求助10
9秒前
9秒前
9秒前
IvanMcRae应助牛牛眉目采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
阿景完成签到,获得积分10
12秒前
Hygge发布了新的文献求助10
12秒前
Mountain_Y完成签到,获得积分10
13秒前
万能图书馆应助栀雨味采纳,获得10
13秒前
山有扶苏发布了新的文献求助30
15秒前
zbhshihr发布了新的文献求助10
15秒前
李爱国应助高兴白莲采纳,获得10
21秒前
wanci应助高兴白莲采纳,获得10
22秒前
Akim应助高兴白莲采纳,获得10
22秒前
赘婿应助高兴白莲采纳,获得10
22秒前
22秒前
共享精神应助高兴白莲采纳,获得10
22秒前
山有扶苏完成签到,获得积分10
22秒前
23秒前
无花果应助橙子采纳,获得10
24秒前
26秒前
26秒前
韩雨欣关注了科研通微信公众号
26秒前
英姑应助YXH采纳,获得10
27秒前
勇者小超人完成签到,获得积分10
28秒前
郭月发布了新的文献求助10
31秒前
31秒前
日暮里发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105