FCA-Net: Fully context-aware feature aggregation network for medical segmentation

计算机科学 背景(考古学) 特征(语言学) 分割 人工智能 图像分割 利用 边界(拓扑) 模式识别(心理学) 计算机视觉 数学 哲学 语言学 生物 古生物学 数学分析 计算机安全
作者
D.C. Liu,Hongmin Deng,Zhengwei Huang,Jinghao Fu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106004-106004 被引量:2
标识
DOI:10.1016/j.bspc.2024.106004
摘要

Accurate segmentation of lesion based on the Dermatoscopy images and Colonoscopy polyp images is beneficial for subsequent diagnosis and treatment. Although effectiveness has been verified in the fields of skin segmentation and polyp segmentation, there are still some challenges. Skin lesions and polyps often have different sizes and shapes, and a lack of clear boundaries between the lesion area and the background. To address this issue, we propose a new fully context-aware feature aggregation network (FCA-Net). It features three innovative designs: the edge perception module (EPM), the boundary-guided feature aggregation module (BFAM), and the iterative context aggregation module (ICAM). The EPM extracts initial boundary guidance maps from high-level and low-level features simultaneously, the BFAM incorporates boundary information into the segmentation network, enhancing these hierarchical features, better preserving boundary details and repositioning the calibrated objects. The ICAM leverages a fully context-aware approach to better exploit dependencies among features at different scales for more effective feature aggregation. Extensive experiments on two categories of datasets demonstrate that our proposed model outperforms state-of-the-art methods in the segmentation of lesion areas for different diseases including skin lesions and polyps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihui完成签到,获得积分10
3秒前
8秒前
云深不知处完成签到,获得积分10
9秒前
10秒前
慕青应助泽锦臻采纳,获得10
14秒前
Sandy发布了新的文献求助30
15秒前
斯文败类应助schrodinger采纳,获得10
16秒前
uouuo完成签到 ,获得积分10
17秒前
siriuslee99完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
22秒前
24秒前
大个应助张文静采纳,获得10
24秒前
聪慧的鸣凤完成签到,获得积分10
24秒前
欣慰电脑发布了新的文献求助10
24秒前
sssss发布了新的文献求助10
24秒前
泽锦臻发布了新的文献求助10
27秒前
Maria完成签到,获得积分10
30秒前
31秒前
34秒前
天一完成签到,获得积分10
36秒前
冷锋面发布了新的文献求助10
36秒前
领导范儿应助小情绪采纳,获得10
37秒前
38秒前
万能图书馆应助lixin采纳,获得10
39秒前
张文静发布了新的文献求助10
40秒前
连夜雪完成签到,获得积分10
41秒前
41秒前
41秒前
沉默的板凳完成签到,获得积分20
46秒前
49秒前
无花果应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
布溜应助科研通管家采纳,获得10
49秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
蓝天应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得30
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088