FCA-Net: Fully context-aware feature aggregation network for medical segmentation

计算机科学 背景(考古学) 特征(语言学) 分割 人工智能 图像分割 利用 边界(拓扑) 模式识别(心理学) 计算机视觉 数学 哲学 语言学 生物 古生物学 数学分析 计算机安全
作者
D.C. Liu,Hongmin Deng,Zhengwei Huang,Jinghao Fu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106004-106004 被引量:2
标识
DOI:10.1016/j.bspc.2024.106004
摘要

Accurate segmentation of lesion based on the Dermatoscopy images and Colonoscopy polyp images is beneficial for subsequent diagnosis and treatment. Although effectiveness has been verified in the fields of skin segmentation and polyp segmentation, there are still some challenges. Skin lesions and polyps often have different sizes and shapes, and a lack of clear boundaries between the lesion area and the background. To address this issue, we propose a new fully context-aware feature aggregation network (FCA-Net). It features three innovative designs: the edge perception module (EPM), the boundary-guided feature aggregation module (BFAM), and the iterative context aggregation module (ICAM). The EPM extracts initial boundary guidance maps from high-level and low-level features simultaneously, the BFAM incorporates boundary information into the segmentation network, enhancing these hierarchical features, better preserving boundary details and repositioning the calibrated objects. The ICAM leverages a fully context-aware approach to better exploit dependencies among features at different scales for more effective feature aggregation. Extensive experiments on two categories of datasets demonstrate that our proposed model outperforms state-of-the-art methods in the segmentation of lesion areas for different diseases including skin lesions and polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗先生完成签到,获得积分10
刚刚
所所应助Ann采纳,获得10
刚刚
一只西辞完成签到 ,获得积分10
刚刚
犹豫的归尘完成签到,获得积分10
2秒前
2秒前
罐装冰块完成签到,获得积分10
3秒前
ASDS完成签到,获得积分10
3秒前
文娟Liu完成签到,获得积分10
3秒前
善学以致用应助宋晓静采纳,获得10
4秒前
于丽萍完成签到 ,获得积分10
4秒前
怪叔叔完成签到,获得积分10
4秒前
健忘的绿草完成签到,获得积分20
5秒前
愉快惜海完成签到,获得积分10
6秒前
含蓄的白安完成签到,获得积分10
6秒前
6秒前
ggzipho发布了新的文献求助10
6秒前
7秒前
大个应助周周采纳,获得10
7秒前
粗心的凡阳完成签到,获得积分10
7秒前
超人不会飞完成签到 ,获得积分20
7秒前
凌一五八完成签到,获得积分10
7秒前
8秒前
坚强三德完成签到,获得积分10
8秒前
8秒前
Ann完成签到,获得积分10
9秒前
9秒前
9秒前
Neshama完成签到,获得积分10
10秒前
慕青应助ppsweek采纳,获得10
11秒前
田様应助魔幻蓉采纳,获得10
11秒前
hkh发布了新的文献求助10
11秒前
Liu发布了新的文献求助10
12秒前
SYLH应助健忘的绿草采纳,获得20
12秒前
13秒前
13秒前
深情的大碗完成签到,获得积分20
14秒前
15秒前
taster完成签到,获得积分10
15秒前
上官若男应助皮卡皮卡丘采纳,获得10
15秒前
搜集达人应助青衫采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124