Simultaneous Comparisons of 25 Acute Migraine Medications Based on 10 Million Users' Self-Reported Records From a Smartphone Application

特里普坦 医学 偏头痛 对乙酰氨基酚 优势比 布洛芬 逻辑回归 病历 子群分析 内科学 急诊医学 麻醉 置信区间 药理学
作者
Chia‐Chun Chiang,Xuemin Fang,Zsolt Horváth,François Cadiou,Alexandre Urani,Weijie Poh,Hiroto Narimatsu,Yu Cheng,David W. Dodick
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:101 (24) 被引量:9
标识
DOI:10.1212/wnl.0000000000207964
摘要

Background

Many acute treatment options exist for migraine. However, large-scale, head-to-head comparisons of treatment effectiveness from real-world patient experience reports are lacking.

Methods

This is a retrospective analysis of 10,842,795 migraine attack records extracted from an e-diary smartphone application between June 30, 2014, and July 2, 2020. We analyzed 25 acute medications among seven classes- acetaminophen, NSAIDs, triptans, combination analgesics, ergots, anti-emetics, and opioids. Gepants and ditan were not included in this analysis. Different doses and formulations of each medication, according to the generic names, were combined in this analysis. We employed a two-level nested logistic regression model to analyze the odds ratio (OR) of treatment effectiveness of each medication by adjusting concurrent medications and the covariance within the same user. Subgroup analyses were conducted for users in the United States (US), the United Kingdom (UK), and Canada (CAN).

Results

Our final analysis included 4,777,524 medication-outcome pairs from 3,119,517 migraine attacks among 278,006 users. Triptans (mean OR 4.8), ergots (mean OR 3.02), and anti-emetics (mean OR 2.67) were the top three classes of medications with the highest effectiveness, followed by opioids (mean OR 2.49), NSAIDs (other than ibuprofen, mean OR 1.94), combination analgesics (acetaminophen/acetylsalicylic acid/caffeine) (OR 1.69, 95% CI 1.67-1.71), others (OR 1.49, 95% CI 1.47-1.50), and acetaminophen (OR 0.83, 95% CI 0.83-0.84), using ibuprofen as the reference. Individual medications with the highest ORs were eletriptan (OR 6.1, 95% CI 6.0-6.3), zolmitriptan (OR 5.7, 95% CI 5.6-5.8), and sumatriptan (OR 5.2, 95% CI 5.2-5.3). The ORs of acetaminophen, NSAIDS, combination analgesics and opioids were mostly around or less than 1, suggesting similar or lower reported effectiveness compared to ibuprofen. The ORs for 24 medications, except that of acetylsalicylic acid, achieved statistical significance with p <0.0001, and our nested logistic regression model achieved an area under the curve (AUC) of 0.849. Country-specific subgroup analyses revealed similar ORs of each medication and AUC (US 0.849, UK 0.864, and CAN 0.842), demonstrating the robustness of our analysis.

Discussion

Using a big-data approach, we analyzed patient-generated real-time records of 10 million migraine attacks and conducted simultaneous head-to-head comparisons of 25 acute migraine medications. Our findings that triptans, ergots and anti-emetics are the most effective classes of medications align with the guideline recommendations and offer generalizable insights to complement clinical practice.

Classification of Evidence:

This study provides Class IV evidence that for patients with migraine, selected acute medications (e.g., triptans, ergots, anti-emetics) are associated with higher odds of user-rated positive response than ibuprofen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
马吉克完成签到 ,获得积分10
1秒前
复成发布了新的文献求助10
1秒前
zzww发布了新的文献求助10
1秒前
1秒前
2秒前
哭泣的海莲完成签到,获得积分10
2秒前
yj1506837246发布了新的文献求助10
2秒前
浮游应助彭于晏采纳,获得10
3秒前
筋筋子发布了新的文献求助10
3秒前
廿叁发布了新的文献求助20
3秒前
英姑应助asder采纳,获得10
4秒前
隐形曼青应助文艺冰露采纳,获得10
4秒前
5秒前
爱吃脆脆鲨完成签到 ,获得积分10
5秒前
gao发布了新的文献求助10
6秒前
TTT发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
0128lun发布了新的文献求助10
7秒前
史一豆完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
真实的煎饼完成签到,获得积分10
8秒前
科研通AI5应助吴垚采纳,获得10
9秒前
Lucas应助甜甜若冰采纳,获得20
9秒前
万能图书馆应助into0s采纳,获得10
10秒前
ndPAXB_able应助清风采纳,获得20
10秒前
pincoudegushi发布了新的文献求助10
10秒前
张爽完成签到,获得积分10
11秒前
11秒前
ada驳回了有结果应助
11秒前
赫若魔应助yan采纳,获得10
11秒前
小二郎应助Orochimaru采纳,获得10
11秒前
yy发布了新的文献求助10
11秒前
萨利完成签到,获得积分10
11秒前
科研小狗完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705