Semantic Segmentation of Urban Street Scenes Based on Prototype Learning and Neighborhood Attention

计算机科学 分割 人工智能 嵌入 像素 参数化复杂度 编码器 利用 计算机视觉 图像分割 机器学习 模式识别(心理学) 算法 计算机安全 操作系统
作者
Hao Hu,Jin-Chun Piao
标识
DOI:10.1109/icrcv59470.2023.10329050
摘要

Semantic segmentation, as one of the fundamental topics in computer vision, aims to identify the class of each pixel in an image and has a wide range of applications in many fields. Traditional semantic segmentation models for dense prediction can be reduced to learning a single prototype of weight/query vectors for each class, which ignores the rich intra-class diversity and is fully parameterized in a way that does not take into consideration the representational power of the prototype and does not take fully exploit of the model’s segmentation capabilities. Hierarchical Transformers have gained a lot of interest in the vision domain due to their superior performance and ease of integration. These models usually employ local attention mechanisms, which effectively reduce the secondary complexity of the self-attention, but also lose the ability to capture long-range dependencies and the properties of the global receptive field. In this study, we propose DiPFormer, which introduces dilated neighborhood attention in the encoder part, which acts as an extension of neighborhood attention to capture more global dependencies and exponentially expands the receptive field without increasing the computational cost; and treats each class as a set of prototypes and directly shapes the pixel embedding space in the Decoder part, which is optimized by optimizing the distance for prediction. Evaluation results on the publicly available dataset Cityscapes show that the method achieves 83.89% mIoU, an improvement of 1.59 percentage points over the SegFormer, proving that the method is an effective improvement over baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐凤年发布了新的文献求助10
1秒前
zj完成签到 ,获得积分10
1秒前
2秒前
pp完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Rico_完成签到,获得积分10
4秒前
烟花应助猪伱平安采纳,获得10
4秒前
piliayouxia完成签到,获得积分10
5秒前
5秒前
39完成签到 ,获得积分10
5秒前
打打应助朴实的秋采纳,获得10
5秒前
7秒前
7秒前
8秒前
8秒前
Ava应助魏艳秋采纳,获得30
9秒前
9秒前
花开米兰城完成签到,获得积分10
9秒前
副本完成签到 ,获得积分10
10秒前
欢呼钧发布了新的文献求助10
10秒前
10秒前
10秒前
piliayouxia发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
呼呼呼完成签到,获得积分10
13秒前
14秒前
欣喜的芝麻完成签到 ,获得积分10
14秒前
万能图书馆应助zhhua采纳,获得10
14秒前
多余完成签到,获得积分10
14秒前
14秒前
手拿大炮发布了新的文献求助10
14秒前
14秒前
干净怜阳发布了新的文献求助10
14秒前
QWSS发布了新的文献求助10
14秒前
Ken发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415536
求助须知:如何正确求助?哪些是违规求助? 4532163
关于积分的说明 14132430
捐赠科研通 4447786
什么是DOI,文献DOI怎么找? 2439866
邀请新用户注册赠送积分活动 1431907
关于科研通互助平台的介绍 1409459