Semantic Segmentation of Urban Street Scenes Based on Prototype Learning and Neighborhood Attention

计算机科学 分割 人工智能 嵌入 像素 参数化复杂度 编码器 利用 计算机视觉 图像分割 机器学习 模式识别(心理学) 算法 计算机安全 操作系统
作者
Hao Hu,Jin-Chun Piao
标识
DOI:10.1109/icrcv59470.2023.10329050
摘要

Semantic segmentation, as one of the fundamental topics in computer vision, aims to identify the class of each pixel in an image and has a wide range of applications in many fields. Traditional semantic segmentation models for dense prediction can be reduced to learning a single prototype of weight/query vectors for each class, which ignores the rich intra-class diversity and is fully parameterized in a way that does not take into consideration the representational power of the prototype and does not take fully exploit of the model’s segmentation capabilities. Hierarchical Transformers have gained a lot of interest in the vision domain due to their superior performance and ease of integration. These models usually employ local attention mechanisms, which effectively reduce the secondary complexity of the self-attention, but also lose the ability to capture long-range dependencies and the properties of the global receptive field. In this study, we propose DiPFormer, which introduces dilated neighborhood attention in the encoder part, which acts as an extension of neighborhood attention to capture more global dependencies and exponentially expands the receptive field without increasing the computational cost; and treats each class as a set of prototypes and directly shapes the pixel embedding space in the Decoder part, which is optimized by optimizing the distance for prediction. Evaluation results on the publicly available dataset Cityscapes show that the method achieves 83.89% mIoU, an improvement of 1.59 percentage points over the SegFormer, proving that the method is an effective improvement over baseline model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
HUYUE完成签到 ,获得积分10
刚刚
徐仁森发布了新的文献求助10
刚刚
一灯大师发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
哈哈发布了新的文献求助10
2秒前
4秒前
蝴蝶完成签到,获得积分10
4秒前
YYY发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
LY发布了新的文献求助10
6秒前
如意皮带发布了新的文献求助10
6秒前
6秒前
花花哈发布了新的文献求助10
6秒前
陌陌发布了新的文献求助10
6秒前
火星上小天鹅关注了科研通微信公众号
7秒前
可爱的函函应助杨潇丶丶采纳,获得10
7秒前
8秒前
赖赖给赖赖的求助进行了留言
8秒前
8秒前
小小美少女完成签到 ,获得积分10
9秒前
hhh完成签到,获得积分10
9秒前
9秒前
cc发布了新的文献求助10
9秒前
10秒前
无奈冥完成签到,获得积分10
10秒前
10秒前
王燕涛发布了新的文献求助10
11秒前
zhouyan发布了新的文献求助10
11秒前
11秒前
SciGPT应助lily采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
Yuki发布了新的文献求助10
12秒前
TBLS发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729