已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic Segmentation of Urban Street Scenes Based on Prototype Learning and Neighborhood Attention

计算机科学 分割 人工智能 嵌入 像素 参数化复杂度 编码器 利用 计算机视觉 图像分割 机器学习 模式识别(心理学) 算法 计算机安全 操作系统
作者
Hao Hu,Jin-Chun Piao
标识
DOI:10.1109/icrcv59470.2023.10329050
摘要

Semantic segmentation, as one of the fundamental topics in computer vision, aims to identify the class of each pixel in an image and has a wide range of applications in many fields. Traditional semantic segmentation models for dense prediction can be reduced to learning a single prototype of weight/query vectors for each class, which ignores the rich intra-class diversity and is fully parameterized in a way that does not take into consideration the representational power of the prototype and does not take fully exploit of the model’s segmentation capabilities. Hierarchical Transformers have gained a lot of interest in the vision domain due to their superior performance and ease of integration. These models usually employ local attention mechanisms, which effectively reduce the secondary complexity of the self-attention, but also lose the ability to capture long-range dependencies and the properties of the global receptive field. In this study, we propose DiPFormer, which introduces dilated neighborhood attention in the encoder part, which acts as an extension of neighborhood attention to capture more global dependencies and exponentially expands the receptive field without increasing the computational cost; and treats each class as a set of prototypes and directly shapes the pixel embedding space in the Decoder part, which is optimized by optimizing the distance for prediction. Evaluation results on the publicly available dataset Cityscapes show that the method achieves 83.89% mIoU, an improvement of 1.59 percentage points over the SegFormer, proving that the method is an effective improvement over baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万崽秋秋糖完成签到 ,获得积分10
3秒前
3秒前
钮小童完成签到,获得积分10
5秒前
7秒前
小五发布了新的文献求助10
8秒前
球球了发布了新的文献求助10
12秒前
有机发布了新的文献求助10
13秒前
完美世界应助yutj采纳,获得10
16秒前
科研通AI2S应助球球了采纳,获得10
20秒前
SJ完成签到,获得积分10
21秒前
NexusExplorer应助有机采纳,获得10
22秒前
25秒前
饱满芷卉发布了新的文献求助10
25秒前
26秒前
科研通AI2S应助和谐乐珍采纳,获得10
27秒前
雾蒽完成签到,获得积分10
33秒前
34秒前
38秒前
Yw_M发布了新的文献求助10
39秒前
善学以致用应助123采纳,获得10
41秒前
43秒前
44秒前
Lucas应助可爱怀莲采纳,获得10
45秒前
49秒前
51秒前
51秒前
52秒前
周周发布了新的文献求助10
55秒前
123发布了新的文献求助10
55秒前
可爱怀莲发布了新的文献求助10
57秒前
57秒前
郭盾发布了新的文献求助10
58秒前
58秒前
不配.应助欣喜尔蝶采纳,获得10
1分钟前
我我我发布了新的文献求助10
1分钟前
领导范儿应助周周采纳,获得10
1分钟前
英俊的铭应助郭盾采纳,获得30
1分钟前
xiaoming应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954