Semantic Segmentation of Urban Street Scenes Based on Prototype Learning and Neighborhood Attention

计算机科学 分割 人工智能 嵌入 像素 参数化复杂度 编码器 利用 计算机视觉 图像分割 机器学习 模式识别(心理学) 算法 计算机安全 操作系统
作者
Hao Hu,Jin-Chun Piao
标识
DOI:10.1109/icrcv59470.2023.10329050
摘要

Semantic segmentation, as one of the fundamental topics in computer vision, aims to identify the class of each pixel in an image and has a wide range of applications in many fields. Traditional semantic segmentation models for dense prediction can be reduced to learning a single prototype of weight/query vectors for each class, which ignores the rich intra-class diversity and is fully parameterized in a way that does not take into consideration the representational power of the prototype and does not take fully exploit of the model’s segmentation capabilities. Hierarchical Transformers have gained a lot of interest in the vision domain due to their superior performance and ease of integration. These models usually employ local attention mechanisms, which effectively reduce the secondary complexity of the self-attention, but also lose the ability to capture long-range dependencies and the properties of the global receptive field. In this study, we propose DiPFormer, which introduces dilated neighborhood attention in the encoder part, which acts as an extension of neighborhood attention to capture more global dependencies and exponentially expands the receptive field without increasing the computational cost; and treats each class as a set of prototypes and directly shapes the pixel embedding space in the Decoder part, which is optimized by optimizing the distance for prediction. Evaluation results on the publicly available dataset Cityscapes show that the method achieves 83.89% mIoU, an improvement of 1.59 percentage points over the SegFormer, proving that the method is an effective improvement over baseline model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温骐华完成签到 ,获得积分10
刚刚
平淡冬亦完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
fqpang完成签到 ,获得积分10
5秒前
ChatGPT发布了新的文献求助10
8秒前
9秒前
三伏天完成签到,获得积分10
12秒前
舒适涵山完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
万能图书馆应助雪糕采纳,获得10
17秒前
量子星尘发布了新的文献求助10
20秒前
ChatGPT完成签到,获得积分10
21秒前
淡然的剑通完成签到 ,获得积分10
23秒前
24秒前
onevip完成签到,获得积分0
24秒前
27秒前
白瑾完成签到 ,获得积分10
29秒前
蔷薇完成签到,获得积分10
30秒前
laoxie301发布了新的文献求助20
30秒前
billkin完成签到,获得积分10
32秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
有血条就敢上完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
ffy完成签到,获得积分20
38秒前
景代丝完成签到,获得积分0
40秒前
量子星尘发布了新的文献求助10
40秒前
xmqaq完成签到,获得积分10
40秒前
40秒前
Gary完成签到,获得积分20
42秒前
小海豹完成签到,获得积分10
44秒前
天天快乐应助蔷薇采纳,获得10
46秒前
柒柒球完成签到 ,获得积分10
46秒前
历史真相完成签到,获得积分20
47秒前
小海豹发布了新的文献求助10
48秒前
彬彬完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936