Semantic Segmentation of Urban Street Scenes Based on Prototype Learning and Neighborhood Attention

计算机科学 分割 人工智能 嵌入 像素 参数化复杂度 编码器 利用 计算机视觉 图像分割 机器学习 模式识别(心理学) 算法 计算机安全 操作系统
作者
Hao Hu,Jin-Chun Piao
标识
DOI:10.1109/icrcv59470.2023.10329050
摘要

Semantic segmentation, as one of the fundamental topics in computer vision, aims to identify the class of each pixel in an image and has a wide range of applications in many fields. Traditional semantic segmentation models for dense prediction can be reduced to learning a single prototype of weight/query vectors for each class, which ignores the rich intra-class diversity and is fully parameterized in a way that does not take into consideration the representational power of the prototype and does not take fully exploit of the model’s segmentation capabilities. Hierarchical Transformers have gained a lot of interest in the vision domain due to their superior performance and ease of integration. These models usually employ local attention mechanisms, which effectively reduce the secondary complexity of the self-attention, but also lose the ability to capture long-range dependencies and the properties of the global receptive field. In this study, we propose DiPFormer, which introduces dilated neighborhood attention in the encoder part, which acts as an extension of neighborhood attention to capture more global dependencies and exponentially expands the receptive field without increasing the computational cost; and treats each class as a set of prototypes and directly shapes the pixel embedding space in the Decoder part, which is optimized by optimizing the distance for prediction. Evaluation results on the publicly available dataset Cityscapes show that the method achieves 83.89% mIoU, an improvement of 1.59 percentage points over the SegFormer, proving that the method is an effective improvement over baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助谨慎的花生采纳,获得10
刚刚
科研狗发布了新的文献求助10
刚刚
1秒前
超级的班发布了新的文献求助10
2秒前
李政卓完成签到,获得积分10
2秒前
星辰大海应助孙涛采纳,获得10
2秒前
3秒前
orixero应助怕黑的傲蕾采纳,获得10
3秒前
兔子发布了新的文献求助10
3秒前
邱文县完成签到,获得积分10
4秒前
4秒前
4秒前
朴实的访烟完成签到,获得积分10
4秒前
4秒前
浮游应助laowaikuan采纳,获得10
5秒前
布公发布了新的文献求助10
5秒前
5秒前
6秒前
eavis完成签到,获得积分10
6秒前
淡定宛白完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
重要衬衫发布了新的文献求助10
8秒前
wwz应助WJT采纳,获得10
8秒前
tianhaoyang发布了新的文献求助10
8秒前
何aa应助长孙归尘采纳,获得30
9秒前
Fuch完成签到 ,获得积分10
9秒前
9秒前
ostinato完成签到,获得积分10
9秒前
淳于黎昕完成签到,获得积分10
9秒前
南曦发布了新的文献求助10
9秒前
9秒前
科研通AI6应助鲜于灵竹采纳,获得10
10秒前
俞晓完成签到 ,获得积分10
10秒前
布公完成签到,获得积分10
10秒前
谦让的凝阳完成签到,获得积分10
11秒前
12秒前
在水一方应助xxy采纳,获得10
12秒前
科研通AI6应助butaishao采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406