The value of intratumoral and peritumoral radiomics features in differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes

无线电技术 阶段(地层学) 腺癌 医学 价值(数学) 病理 肿瘤科 内科学 放射科 生物 癌症 计算机科学 机器学习 古生物学
作者
Tong Zhou,Ming Yang,Wei Xiong,Fandong Zhu,Qianling Li,Li Zhao,Zhenhua Zhao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (1): 202-216
标识
DOI:10.21037/tcr-23-1324
摘要

Background: The identification of different subtypes of early-stage lung invasive adenocarcinoma before surgery contributes to the precision treatment. Radiomics could be one of the effective and noninvasive identification methods. The value of peritumoral radiomics in predicting the subtypes of early-stage lung invasive adenocarcinoma perhaps clinically useful. Methods: This retrospective study included 937 lung adenocarcinomas which were randomly divided into the training set (n=655) and testing set (n=282) with a ratio of 7:3. This study used the univariate and multivariate analysis to choose independent clinical predictors. Radiomics features were extracted from 18 regions of interest (1 intratumoral region and 17 peritumoral regions). Independent and conjoint prediction models were constructed based on radiomics and clinical features. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE). Significant differences between areas under the ROC (AUCs) were estimated using in the Delong test. Results: Patient age, smoking history, carcinoembryonic antigen (CEA), lesion location, length, width and clinic behavior were the independent predictors of differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes. The highest AUC value among the 19 independent models was obtained for the PTV0~+3 radiomics model with 0.849 for the training set and 0.854 for the testing set. As the peritumoral distance increased, the predictive power of the models decreased. The radiomics-clinical conjoint model was statistically significantly different from the other models in the Delong test (P<0.05). Conclusions: The intratumoral and peritumoral regions contained a wealth of clinical information. The diagnostic efficacy of intra-peritumoral radiomics combined clinical model was further improved, which was particularly important for preoperative staging and treatment decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘振豪发布了新的文献求助10
刚刚
wuuToiiin完成签到,获得积分10
1秒前
杨一乐发布了新的文献求助50
1秒前
咖啡酸醋冰完成签到,获得积分10
1秒前
幽默的方盒完成签到,获得积分10
1秒前
1秒前
爆米花应助灵巧的山水采纳,获得10
2秒前
2秒前
iW发布了新的文献求助10
3秒前
lucky发布了新的文献求助10
3秒前
朴素访琴完成签到 ,获得积分10
3秒前
3秒前
longyuyan完成签到,获得积分10
4秒前
4秒前
4秒前
Rec完成签到 ,获得积分10
4秒前
虎啊虎啊发布了新的文献求助10
5秒前
周婷发布了新的文献求助10
5秒前
夜神月发布了新的文献求助10
5秒前
5秒前
5秒前
HCL发布了新的文献求助10
5秒前
6秒前
wushuwen完成签到,获得积分10
6秒前
6秒前
langkanpu完成签到,获得积分10
6秒前
7秒前
7秒前
大一京城完成签到 ,获得积分10
7秒前
小马甲应助辛勤面包采纳,获得30
7秒前
sure发布了新的文献求助10
7秒前
cherish完成签到,获得积分10
8秒前
于你无瓜完成签到,获得积分10
8秒前
CodeCraft应助怕孤独的傲柏采纳,获得30
8秒前
8秒前
月球上的人完成签到 ,获得积分10
8秒前
9秒前
单薄冰安发布了新的文献求助10
9秒前
乐乐应助stw采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836