The value of intratumoral and peritumoral radiomics features in differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes

无线电技术 阶段(地层学) 腺癌 医学 价值(数学) 病理 肿瘤科 内科学 放射科 生物 癌症 计算机科学 机器学习 古生物学
作者
Tong Zhou,Ming Yang,Wei Xiong,Fandong Zhu,Qianling Li,Li Zhao,Zhenhua Zhao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (1): 202-216
标识
DOI:10.21037/tcr-23-1324
摘要

Background: The identification of different subtypes of early-stage lung invasive adenocarcinoma before surgery contributes to the precision treatment. Radiomics could be one of the effective and noninvasive identification methods. The value of peritumoral radiomics in predicting the subtypes of early-stage lung invasive adenocarcinoma perhaps clinically useful. Methods: This retrospective study included 937 lung adenocarcinomas which were randomly divided into the training set (n=655) and testing set (n=282) with a ratio of 7:3. This study used the univariate and multivariate analysis to choose independent clinical predictors. Radiomics features were extracted from 18 regions of interest (1 intratumoral region and 17 peritumoral regions). Independent and conjoint prediction models were constructed based on radiomics and clinical features. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE). Significant differences between areas under the ROC (AUCs) were estimated using in the Delong test. Results: Patient age, smoking history, carcinoembryonic antigen (CEA), lesion location, length, width and clinic behavior were the independent predictors of differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes. The highest AUC value among the 19 independent models was obtained for the PTV0~+3 radiomics model with 0.849 for the training set and 0.854 for the testing set. As the peritumoral distance increased, the predictive power of the models decreased. The radiomics-clinical conjoint model was statistically significantly different from the other models in the Delong test (P<0.05). Conclusions: The intratumoral and peritumoral regions contained a wealth of clinical information. The diagnostic efficacy of intra-peritumoral radiomics combined clinical model was further improved, which was particularly important for preoperative staging and treatment decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZOE应助9699采纳,获得50
刚刚
jasmineee完成签到 ,获得积分10
1秒前
Twonej给丫丫的求助进行了留言
1秒前
rumor发布了新的文献求助10
1秒前
Jasper应助跳跃小伙采纳,获得100
2秒前
wanwuzhumu发布了新的文献求助10
2秒前
小劉同志关注了科研通微信公众号
2秒前
林夕完成签到 ,获得积分10
2秒前
柔弱的老三完成签到 ,获得积分10
2秒前
3秒前
CadoreK完成签到 ,获得积分10
3秒前
landy完成签到 ,获得积分10
4秒前
舒心幻竹完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
FashionBoy应助pamela采纳,获得10
6秒前
7秒前
522完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
脉动完成签到,获得积分10
9秒前
9秒前
fantastic完成签到,获得积分10
10秒前
Jero完成签到 ,获得积分10
10秒前
rrrr发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得20
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得30
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812