The value of intratumoral and peritumoral radiomics features in differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes

无线电技术 阶段(地层学) 腺癌 医学 价值(数学) 病理 肿瘤科 内科学 放射科 生物 癌症 计算机科学 古生物学 机器学习
作者
Tong Zhou,Ming Yang,Wei Xiong,Fandong Zhu,Qianling Li,Li Zhao,Zhenhua Zhao
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (1): 202-216
标识
DOI:10.21037/tcr-23-1324
摘要

Background: The identification of different subtypes of early-stage lung invasive adenocarcinoma before surgery contributes to the precision treatment. Radiomics could be one of the effective and noninvasive identification methods. The value of peritumoral radiomics in predicting the subtypes of early-stage lung invasive adenocarcinoma perhaps clinically useful. Methods: This retrospective study included 937 lung adenocarcinomas which were randomly divided into the training set (n=655) and testing set (n=282) with a ratio of 7:3. This study used the univariate and multivariate analysis to choose independent clinical predictors. Radiomics features were extracted from 18 regions of interest (1 intratumoral region and 17 peritumoral regions). Independent and conjoint prediction models were constructed based on radiomics and clinical features. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE). Significant differences between areas under the ROC (AUCs) were estimated using in the Delong test. Results: Patient age, smoking history, carcinoembryonic antigen (CEA), lesion location, length, width and clinic behavior were the independent predictors of differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes. The highest AUC value among the 19 independent models was obtained for the PTV0~+3 radiomics model with 0.849 for the training set and 0.854 for the testing set. As the peritumoral distance increased, the predictive power of the models decreased. The radiomics-clinical conjoint model was statistically significantly different from the other models in the Delong test (P<0.05). Conclusions: The intratumoral and peritumoral regions contained a wealth of clinical information. The diagnostic efficacy of intra-peritumoral radiomics combined clinical model was further improved, which was particularly important for preoperative staging and treatment decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脑虎本虎完成签到,获得积分10
1秒前
1秒前
任志政完成签到 ,获得积分10
2秒前
Ava应助郑旭辉采纳,获得10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
vvi发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
miao3718完成签到 ,获得积分10
5秒前
6秒前
无花果应助colin采纳,获得10
6秒前
luckypig完成签到,获得积分10
6秒前
wyf发布了新的文献求助30
7秒前
不知名的呆毛完成签到,获得积分10
7秒前
曾经富完成签到,获得积分10
7秒前
李沐唅完成签到 ,获得积分10
7秒前
8秒前
Ambit完成签到,获得积分20
8秒前
张小完成签到,获得积分20
9秒前
11秒前
TingtingGZ发布了新的文献求助10
11秒前
11秒前
12秒前
claud完成签到 ,获得积分10
13秒前
勤恳元枫完成签到,获得积分10
13秒前
13秒前
14秒前
自由醉薇完成签到 ,获得积分10
15秒前
蔚蓝天空完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
小小的手心完成签到,获得积分10
16秒前
卷卷完成签到,获得积分10
17秒前
18秒前
18秒前
顺利毕业完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952