Continuous–discrete derivative-free extended Kalman filter based on Euler–Maruyama and Itô–Taylor discretizations: Conventional and square-root implementations

平方根 卡尔曼滤波器 应用数学 衍生工具(金融) 数学 集合卡尔曼滤波器 欧拉公式 控制理论(社会学) 泰勒级数 扩展卡尔曼滤波器 计算机科学 数学分析 统计 经济 几何学 控制(管理) 人工智能 金融经济学
作者
Maria V. Kulikova,Gennady Yu. Kulikov
出处
期刊:European Journal of Control [Elsevier]
卷期号:76: 100960-100960 被引量:2
标识
DOI:10.1016/j.ejcon.2024.100960
摘要

In this paper, we continue to study the derivative-free extended Kalman filtering (DF-EKF) framework for state estimation of continuous–discrete nonlinear stochastic systems. Having considered the Euler–Maruyama and Itô–Taylor discretization schemes for solving stochastic differential equations, we derive the related filters' moment equations based on the derivative-free EKF principal. In contrast to the recently derived MATLAB-based continuous–discrete DF-EKF techniques, the novel DF-EKF methods preserve an information about the underlying stochastic process and provide the estimation procedure for a fixed number of iterates at the propagation steps. Additionally, the DF-EKF approach is particularly effective for working with stochastic systems with highly nonlinear and/or nondifferentiable drift and observation functions, but the price to be paid is its degraded numerical stability (to roundoff) compared to the standard EKF framework. To eliminate the mentioned pitfall of the derivative-free EKF methodology, we develop the conventional algorithms together with their stable square-root implementation methods. In contrast to the published DF-EKF results, the new square-root techniques are derived within both the Cholesky and singular value decompositions. A performance of the novel filters is demonstrated on a number of numerical tests including well- and ill-conditioned scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yun完成签到 ,获得积分10
1秒前
1秒前
3秒前
健忘曼冬发布了新的文献求助10
3秒前
redondo完成签到,获得积分10
3秒前
momo完成签到,获得积分10
4秒前
希望天下0贩的0应助meng采纳,获得10
5秒前
龙歪歪发布了新的文献求助10
6秒前
6秒前
暮城完成签到,获得积分10
6秒前
7秒前
云墨完成签到 ,获得积分10
7秒前
9秒前
10秒前
Akim应助caoyy采纳,获得10
10秒前
11秒前
科研通AI2S应助DreamMaker采纳,获得10
11秒前
14秒前
zho发布了新的文献求助30
14秒前
14秒前
ywang发布了新的文献求助10
14秒前
ZD小草完成签到 ,获得积分10
15秒前
健忘曼冬完成签到,获得积分10
16秒前
hkl1542发布了新的文献求助50
17秒前
18秒前
19秒前
KYN完成签到,获得积分10
20秒前
20秒前
桐桐应助叶未晞yi采纳,获得10
20秒前
20秒前
su发布了新的文献求助10
21秒前
123456789完成签到,获得积分10
23秒前
炙热的如柏完成签到,获得积分20
23秒前
24秒前
25秒前
HWei完成签到,获得积分10
25秒前
Ryan完成签到,获得积分10
25秒前
26秒前
Jzhang应助丙队长采纳,获得10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824