Electro‐Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point‐of‐Care Biomarker Detection

材料科学 注意事项 生物标志物 纳米技术 点(几何) 生物医学工程 医学 护理部 化学 生物化学 几何学 数学
作者
Changhao Dai,Huiwen Xiong,Rui He,Chenxin Zhu,Pintao Li,Mingquan Guo,Jian Gou,Miaomiao Mei,Derong Kong,Qiang Li,Andrew T. S. Wee,Xueen Fang,Jilie Kong,Yunqi Liu,Dacheng Wei
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (15) 被引量:12
标识
DOI:10.1002/adma.202312540
摘要

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳大宝发布了新的文献求助10
1秒前
1秒前
爆米花应助kk采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助luxiang采纳,获得10
4秒前
浅浅发布了新的文献求助10
4秒前
4秒前
现代的访曼应助XT666采纳,获得20
4秒前
聪明的代容完成签到,获得积分10
4秒前
会飞的猪发布了新的文献求助10
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
健忘远山完成签到,获得积分10
5秒前
Peter_Zhu发布了新的文献求助10
6秒前
臭小子发布了新的文献求助10
6秒前
6秒前
FashionBoy应助晚心采纳,获得10
7秒前
LXY171发布了新的文献求助20
7秒前
10秒前
YixiaoWang完成签到,获得积分20
12秒前
苏苏完成签到,获得积分10
12秒前
小魔女完成签到,获得积分10
14秒前
善学以致用应助东方越彬采纳,获得20
14秒前
14秒前
14秒前
15秒前
15秒前
牛牛发布了新的文献求助10
15秒前
zxy应助zianlai采纳,获得10
16秒前
桐桐应助忧郁的猕猴桃采纳,获得10
16秒前
科目三应助YAMO一采纳,获得10
17秒前
苏苏发布了新的文献求助20
18秒前
达克赛德发布了新的文献求助10
18秒前
Peter_Zhu完成签到,获得积分10
18秒前
脑洞疼应助热情起眸采纳,获得10
18秒前
Sy发布了新的文献求助10
19秒前
瘦瘦语蕊发布了新的文献求助10
20秒前
20秒前
慕青应助柳大宝采纳,获得10
21秒前
爱大美完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123