亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Degradation trajectory prediction of lithium‐ion batteries based on charging‐discharging health features extraction and integrated data‐driven models

降级(电信) 锂(药物) 弹道 萃取(化学) 离子 数据提取 计算机科学 汽车工程 工程类 化学 电气工程 色谱法 物理 心理学 梅德林 生物化学 有机化学 天文 精神科
作者
Xiujuan Zheng,Fei Wu,Liujun Tao
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (4): 1833-1854 被引量:1
标识
DOI:10.1002/qre.3496
摘要

Abstract As one of the key technologies in battery management system, accurate remaining useful life (RUL) prediction is critical to guarantee the reliability and safety for electrical equipment. However, the generalization and robustness of a single method are limited. A novel fusion data‐driven RUL prediction method CSSA‐ELM‐LSSVR based on charging‐discharging health features extraction is proposed in this paper, which fusions chaotic sparrow search algorithm (CSSA), extreme learning machine (ELM), and least squares support vector regression (LSSVR). First, four health indicators (HIs) are extracted from the charging‐discharging process, which can reflect the battery degradation phenomenon from multiple perspectives. Then, pearson correlation coefficient is used to numerically analyze the correlation between HIs and battery aging capacities. Second, the extracted HIs are used as the inputs for ELM and LSSVR to predict the degradation trend of battery, where CSSA is used for hyperparameters optimization in ELM. Finally, considering that CSSA‐ELM can capture the general trend of degradation curves, while LSSVR can trace the detail changes, a fusion framework based on CSSA‐ELM and LSSVR is proposed for RUL prediction. Two weighting schemes, namely precision‐based weighting (PW) and random forest regressor‐based weighting (RFRW) are put forward to fix the weights of CSSA‐ELM and LSSVR algorithms. Two publicly available datasets from National Aeronautics and Space Administration (NASA) and MIT are adopted to verify the feasibility and effectiveness of the proposed method. The results indicate that the proposed method with any weighting scheme has an overall superior prediction performance for different kinds of batteries compared with CSSA‐ELM, LSSVR, convolution neural network and long short term memory. Moreover, the RFRW scheme has better overall performance. Specifically, the maximum root mean square error of the predicted method is 2.5126%, the mean absolute percentage error is 12.9167%, the mean absolute error is 1.8376%, the predicted RUL errors are within one cycle, and the determination coefficient is above 0.97.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
serein发布了新的文献求助10
11秒前
12秒前
健忘沛春发布了新的文献求助10
16秒前
xz完成签到 ,获得积分10
48秒前
youngyang完成签到 ,获得积分10
50秒前
1分钟前
1分钟前
刘快乐发布了新的文献求助10
1分钟前
1分钟前
江子川发布了新的文献求助10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
帅气的藏鸟完成签到 ,获得积分10
1分钟前
非洲大象发布了新的文献求助50
2分钟前
慕青应助啊呜采纳,获得10
2分钟前
Amber完成签到 ,获得积分10
2分钟前
3分钟前
脑洞疼应助YUYUYU采纳,获得10
3分钟前
啊呜发布了新的文献求助10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
寻道图强应助科研通管家采纳,获得30
3分钟前
打打应助顺利山柏采纳,获得10
3分钟前
zkwgly完成签到 ,获得积分10
4分钟前
Jenny完成签到,获得积分10
4分钟前
4分钟前
云雀完成签到,获得积分10
4分钟前
云雀发布了新的文献求助30
4分钟前
5分钟前
Aira发布了新的文献求助10
5分钟前
研友_ZbP41L完成签到 ,获得积分10
5分钟前
5分钟前
Steve完成签到 ,获得积分10
5分钟前
顺利山柏发布了新的文献求助10
5分钟前
寻道图强应助科研通管家采纳,获得30
5分钟前
5分钟前
寻道图强应助科研通管家采纳,获得30
5分钟前
我是老大应助科研通管家采纳,获得20
5分钟前
5分钟前
丘比特应助顺利山柏采纳,获得10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314