Porosity prediction through well logging data: A combined approach of convolutional neural network and transformer model (CNN-transformer)

物理 卷积神经网络 变压器 多孔性 人工神经网络 模式识别(心理学) 人工智能 复合材料 电压 计算机科学 量子力学 材料科学
作者
Youzhuang Sun,Shanchen Pang,Junhua Zhang,Yong-An Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:17
标识
DOI:10.1063/5.0190078
摘要

Porosity, as a key parameter to describe the properties of rock reservoirs, is essential for evaluating the permeability and fluid migration performance of underground rocks. In order to overcome the limitations of traditional logging porosity interpretation methods in the face of geological complexity and nonlinear relationships, this study introduces a CNN (convolutional neural network)-transformer model, which aims to improve the accuracy and generalization ability of logging porosity prediction. CNNs have excellent spatial feature capture capabilities. The convolution operation of CNNs can effectively learn the mapping relationship of local features, so as to better capture the local correlation in the well log. Transformer models are able to effectively capture complex sequence relationships between different depths or time points. This enables the model to better integrate information from different depths or times, and improve the porosity prediction accuracy. We trained the model on the well log dataset to ensure that it has good generalization ability. In addition, we comprehensively compare the performance of the CNN-transformer model with other traditional machine learning models to verify its superiority in logging porosity prediction. Through the analysis of experimental results, the CNN-transformer model shows good superiority in the task of logging porosity prediction. The introduction of this model will bring a new perspective to the development of logging technology and provide a more efficient and accurate tool for the field of geoscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
Morssax完成签到,获得积分10
4秒前
今后应助猴哥好样的采纳,获得20
4秒前
小田发布了新的文献求助10
4秒前
Precious发布了新的文献求助10
4秒前
5秒前
烟花应助留胡子的火采纳,获得10
5秒前
6秒前
糟糕的颜发布了新的文献求助10
6秒前
7秒前
WR发布了新的文献求助10
7秒前
7秒前
zz完成签到,获得积分10
8秒前
qqq发布了新的文献求助10
9秒前
可乐要开心完成签到,获得积分10
9秒前
Lyn完成签到 ,获得积分10
9秒前
9秒前
大力沛萍发布了新的文献求助10
10秒前
10秒前
GPTea举报HJY求助涉嫌违规
10秒前
11秒前
了一李发布了新的文献求助50
11秒前
12秒前
深情安青应助山风采纳,获得10
12秒前
shuqi发布了新的文献求助10
13秒前
13秒前
14秒前
外向樱发布了新的文献求助10
14秒前
lz完成签到,获得积分10
14秒前
漂泊2025完成签到,获得积分10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
贝贝应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
浮游应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373