Association of Pathological Features and Multiparametric MRI‐Based Radiomics With TP53‐Mutated Prostate Cancer

接收机工作特性 无线电技术 医学 曼惠特尼U检验 逻辑回归 有效扩散系数 曲线下面积 磁共振成像 核医学 放射科 内科学
作者
Ruchuan Chen,Bingni Zhou,Wei Liu,Hualei Gan,X. Liu,Liangping Zhou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 1134-1145 被引量:1
标识
DOI:10.1002/jmri.29186
摘要

Background TP53 mutations are associated with prostate cancer (PCa) prognosis and therapy. Purpose To develop TP53 mutation classification models for PCa using MRI radiomics and clinicopathological features. Study Type Retrospective. Population 388 patients with PCa from two centers (Center 1: 281 patients; Center 2: 107 patients). Cases from Center 1 were randomly divided into training and internal validation sets (7:3). Cases from Center 2 were used for external validation. Field Strength/Sequence 3.0T/T2‐weighted imaging, dynamic contrast‐enhanced imaging, diffusion‐weighted imaging. Assessment Each patient's index tumor lesion was manually delineated on the above MRI images. Five clinicopathological and 428 radiomics features were obtained from each lesion. Radiomics features were selected by least absolute shrinkage and selection operator and binary logistic regression (LR) analysis, while clinicopathological features were selected using Mann–Whitney U test. Radiomics models were constructed using LR, support vector machine (SVM), and random forest (RF) classifiers. Clinicopathological‐radiomics combined models were constructed using the selected radiomics and clinicopathological features with the aforementioned classifiers. Statistical Tests Mann–Whitney U test. Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC). P value <0.05 indicates statistically significant. Results In the internal validation set, the radiomics model had an AUC of 0.74 with the RF classifier, which was significantly higher than LR (AUC = 0.61), but similar to SVM (AUC = 0.69; P = 0.422). For the combined model, the AUC of RF model was 0.84, which was significantly higher than LR (0.64), but similar to SVM (0.80; P = 0.548). Both the combined RF and combined SVM models showed significantly higher AUCs than the radiomics models. In the external validation set, the combined RF and combined SVM models showed AUCs of 0.83 and 0.82. Data Conclusion Pathological‐radiomics combined models with RF, SVM show the association of TP53 mutations and pathological‐radiomics features of PCa. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321发布了新的文献求助10
1秒前
英勇涔完成签到 ,获得积分10
1秒前
2秒前
3秒前
yangxt-iga发布了新的文献求助10
3秒前
xxx发布了新的文献求助10
3秒前
qq发布了新的文献求助10
5秒前
6秒前
7秒前
科目三应助Bilipear采纳,获得10
9秒前
shor0414发布了新的文献求助10
10秒前
云宝发布了新的文献求助10
10秒前
10秒前
10秒前
星辰大海应助Evan采纳,获得100
11秒前
yvejune发布了新的文献求助10
12秒前
12秒前
wangyue1995发布了新的文献求助10
12秒前
qq完成签到,获得积分10
14秒前
英俊的胜完成签到,获得积分10
15秒前
17秒前
17秒前
高山流水完成签到,获得积分10
19秒前
19秒前
20秒前
orixero应助Quinta采纳,获得10
20秒前
WMYD完成签到,获得积分20
20秒前
21秒前
wangyue1995完成签到,获得积分10
22秒前
1230发布了新的文献求助20
23秒前
开心千青发布了新的文献求助10
23秒前
港岛妹妹发布了新的文献求助10
23秒前
沉默水蓝完成签到,获得积分10
24秒前
Quinta完成签到,获得积分10
24秒前
炙热萝完成签到,获得积分10
25秒前
25秒前
卡萨卡萨发布了新的文献求助10
26秒前
文轩发布了新的文献求助10
26秒前
123qwe完成签到,获得积分20
26秒前
wxt发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283