亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trans-Balance: Reducing demographic disparity for prediction models in the presence of class imbalance

机器学习 计算机科学 人工智能 平衡(能力) 班级(哲学) 预测建模 计量经济学 医学 数学 物理医学与康复
作者
Chuan Hong,Molei Liu,Daniel Wojdyla,Jimmy Hickey,Michael Pencina,Ricardo Henao
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:149: 104532-104532
标识
DOI:10.1016/j.jbi.2023.104532
摘要

Risk prediction, including early disease detection, prevention, and intervention, is essential to precision medicine. However, systematic bias in risk estimation caused by heterogeneity across different demographic groups can lead to inappropriate or misinformed treatment decisions. In addition, low incidence (class-imbalance) outcomes negatively impact the classification performance of many standard learning algorithms which further exacerbates the racial disparity issues. Therefore, it is crucial to improve the performance of statistical and machine learning models in underrepresented populations in the presence of heavy class imbalance. To address demographic disparity in the presence of class imbalance, we develop a novel framework, Trans-Balance, by leveraging recent advances in imbalance learning, transfer learning, and federated learning. We consider a practical setting where data from multiple sites are stored locally under privacy constraints. We show that the proposed Trans-Balance framework improves upon existing approaches by explicitly accounting for heterogeneity across demographic subgroups and cohorts. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-cohort study with data from participants of four large, NIH-funded cohorts for stroke risk prediction. Our findings indicate that the Trans-Balance approach significantly improves predictive performance, especially in scenarios marked by severe class imbalance and demographic disparity. Given its versatility and effectiveness, Trans-Balance offers a valuable contribution to enhancing risk prediction in biomedical research and related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
SCI发布了新的文献求助10
9秒前
科研通AI6应助MOMO采纳,获得10
13秒前
whj完成签到 ,获得积分10
13秒前
SCI完成签到,获得积分10
14秒前
16秒前
能干的人完成签到,获得积分10
40秒前
科研通AI6应助MOMO采纳,获得10
43秒前
科目三应助科研通管家采纳,获得10
48秒前
天天快乐应助科研通管家采纳,获得10
48秒前
烟花应助科研通管家采纳,获得10
48秒前
酷波er应助科研通管家采纳,获得10
48秒前
48秒前
56秒前
fge完成签到,获得积分10
1分钟前
务实擎汉发布了新的文献求助10
1分钟前
1分钟前
MOMO发布了新的文献求助10
1分钟前
MchemG应助小天采纳,获得10
1分钟前
呜呜吴完成签到,获得积分10
1分钟前
靓丽的善斓完成签到 ,获得积分10
1分钟前
MOMO发布了新的文献求助10
1分钟前
MOMO发布了新的文献求助10
2分钟前
思源应助务实擎汉采纳,获得20
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
三点前我必睡完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
MOMO发布了新的文献求助10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
一粟完成签到 ,获得积分10
3分钟前
MchemG完成签到,获得积分0
3分钟前
MOMO发布了新的文献求助10
3分钟前
djbj2022发布了新的文献求助10
3分钟前
3分钟前
wanci应助小天采纳,获得10
3分钟前
4分钟前
小二郎应助圆圆的大脑采纳,获得10
4分钟前
4分钟前
小二郎应助Nowind采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585