Trans-Balance: Reducing demographic disparity for prediction models in the presence of class imbalance

机器学习 计算机科学 人工智能 平衡(能力) 班级(哲学) 预测建模 计量经济学 医学 数学 物理医学与康复
作者
Chuan Hong,Molei Liu,Daniel Wojdyla,Jimmy Hickey,Michael Pencina,Ricardo Henao
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:149: 104532-104532
标识
DOI:10.1016/j.jbi.2023.104532
摘要

Risk prediction, including early disease detection, prevention, and intervention, is essential to precision medicine. However, systematic bias in risk estimation caused by heterogeneity across different demographic groups can lead to inappropriate or misinformed treatment decisions. In addition, low incidence (class-imbalance) outcomes negatively impact the classification performance of many standard learning algorithms which further exacerbates the racial disparity issues. Therefore, it is crucial to improve the performance of statistical and machine learning models in underrepresented populations in the presence of heavy class imbalance. To address demographic disparity in the presence of class imbalance, we develop a novel framework, Trans-Balance, by leveraging recent advances in imbalance learning, transfer learning, and federated learning. We consider a practical setting where data from multiple sites are stored locally under privacy constraints. We show that the proposed Trans-Balance framework improves upon existing approaches by explicitly accounting for heterogeneity across demographic subgroups and cohorts. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-cohort study with data from participants of four large, NIH-funded cohorts for stroke risk prediction. Our findings indicate that the Trans-Balance approach significantly improves predictive performance, especially in scenarios marked by severe class imbalance and demographic disparity. Given its versatility and effectiveness, Trans-Balance offers a valuable contribution to enhancing risk prediction in biomedical research and related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Wang采纳,获得10
3秒前
3秒前
丶Dawn完成签到,获得积分10
4秒前
沉默洋葱完成签到,获得积分10
5秒前
Fjj发布了新的文献求助10
5秒前
给我点光环完成签到,获得积分10
6秒前
8秒前
Francis_完成签到,获得积分10
9秒前
芝麻球ii完成签到,获得积分10
9秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
13秒前
13秒前
珞珈山冲浪选手完成签到,获得积分10
16秒前
18秒前
20秒前
动人的雨莲完成签到,获得积分10
20秒前
叮叮发布了新的文献求助30
20秒前
21秒前
玛珂巴巴珂完成签到,获得积分10
22秒前
张张完成签到,获得积分10
22秒前
Rrrrr_y发布了新的文献求助10
23秒前
西扬完成签到 ,获得积分10
24秒前
现代书雪发布了新的文献求助10
25秒前
领导范儿应助wancheng_采纳,获得10
27秒前
30秒前
aaaaal完成签到,获得积分20
31秒前
oyasimi发布了新的文献求助10
32秒前
NexusExplorer应助冷静乌采纳,获得10
33秒前
aaaaal发布了新的文献求助10
35秒前
聂裕铭完成签到 ,获得积分10
38秒前
39秒前
kk完成签到,获得积分10
40秒前
wancheng_发布了新的文献求助20
40秒前
45秒前
47秒前
48秒前
48秒前
49秒前
50秒前
冷静乌发布了新的文献求助10
51秒前
苗条的听寒完成签到,获得积分10
53秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388