Trans-Balance: Reducing demographic disparity for prediction models in the presence of class imbalance

机器学习 计算机科学 人工智能 平衡(能力) 班级(哲学) 预测建模 计量经济学 医学 数学 物理医学与康复
作者
Chuan Hong,Molei Liu,Daniel Wojdyla,Jimmy Hickey,Michael Pencina,Ricardo Henao
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:149: 104532-104532
标识
DOI:10.1016/j.jbi.2023.104532
摘要

Risk prediction, including early disease detection, prevention, and intervention, is essential to precision medicine. However, systematic bias in risk estimation caused by heterogeneity across different demographic groups can lead to inappropriate or misinformed treatment decisions. In addition, low incidence (class-imbalance) outcomes negatively impact the classification performance of many standard learning algorithms which further exacerbates the racial disparity issues. Therefore, it is crucial to improve the performance of statistical and machine learning models in underrepresented populations in the presence of heavy class imbalance. To address demographic disparity in the presence of class imbalance, we develop a novel framework, Trans-Balance, by leveraging recent advances in imbalance learning, transfer learning, and federated learning. We consider a practical setting where data from multiple sites are stored locally under privacy constraints. We show that the proposed Trans-Balance framework improves upon existing approaches by explicitly accounting for heterogeneity across demographic subgroups and cohorts. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-cohort study with data from participants of four large, NIH-funded cohorts for stroke risk prediction. Our findings indicate that the Trans-Balance approach significantly improves predictive performance, especially in scenarios marked by severe class imbalance and demographic disparity. Given its versatility and effectiveness, Trans-Balance offers a valuable contribution to enhancing risk prediction in biomedical research and related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LMBAXn完成签到,获得积分10
1秒前
红衣落花倾城完成签到 ,获得积分10
2秒前
思量博千金完成签到,获得积分10
2秒前
whuhustwit完成签到,获得积分10
3秒前
3秒前
欢喜可愁完成签到 ,获得积分10
4秒前
VelesAlexei完成签到,获得积分10
4秒前
润物无声完成签到,获得积分10
4秒前
木子完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
无情的薯片完成签到,获得积分10
6秒前
荣浩宇完成签到 ,获得积分10
7秒前
7秒前
8秒前
Justtry发布了新的文献求助10
8秒前
随风完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
达尔文完成签到 ,获得积分10
13秒前
hi_traffic完成签到,获得积分10
14秒前
14秒前
freebird完成签到,获得积分10
15秒前
包容的忆灵完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
寒冷尔柳完成签到 ,获得积分10
17秒前
19秒前
jie完成签到 ,获得积分10
19秒前
yywang发布了新的文献求助10
19秒前
小平完成签到 ,获得积分10
20秒前
ROMANTIC完成签到 ,获得积分10
20秒前
mickiller完成签到,获得积分10
21秒前
充电宝应助freebird采纳,获得10
22秒前
David完成签到 ,获得积分10
22秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
22秒前
ATOM完成签到,获得积分20
23秒前
24秒前
小七2022完成签到,获得积分10
25秒前
安详的冷安完成签到,获得积分10
25秒前
CHOU完成签到 ,获得积分10
27秒前
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006