Trans-Balance: Reducing demographic disparity for prediction models in the presence of class imbalance

机器学习 计算机科学 人工智能 平衡(能力) 班级(哲学) 预测建模 计量经济学 医学 数学 物理医学与康复
作者
Chuan Hong,Molei Liu,Daniel Wojdyla,Jimmy Hickey,Michael Pencina,Ricardo Henao
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:149: 104532-104532
标识
DOI:10.1016/j.jbi.2023.104532
摘要

Risk prediction, including early disease detection, prevention, and intervention, is essential to precision medicine. However, systematic bias in risk estimation caused by heterogeneity across different demographic groups can lead to inappropriate or misinformed treatment decisions. In addition, low incidence (class-imbalance) outcomes negatively impact the classification performance of many standard learning algorithms which further exacerbates the racial disparity issues. Therefore, it is crucial to improve the performance of statistical and machine learning models in underrepresented populations in the presence of heavy class imbalance. To address demographic disparity in the presence of class imbalance, we develop a novel framework, Trans-Balance, by leveraging recent advances in imbalance learning, transfer learning, and federated learning. We consider a practical setting where data from multiple sites are stored locally under privacy constraints. We show that the proposed Trans-Balance framework improves upon existing approaches by explicitly accounting for heterogeneity across demographic subgroups and cohorts. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-cohort study with data from participants of four large, NIH-funded cohorts for stroke risk prediction. Our findings indicate that the Trans-Balance approach significantly improves predictive performance, especially in scenarios marked by severe class imbalance and demographic disparity. Given its versatility and effectiveness, Trans-Balance offers a valuable contribution to enhancing risk prediction in biomedical research and related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
67完成签到,获得积分10
1秒前
SciGPT应助乐观的莫茗采纳,获得10
1秒前
yxdjzwx完成签到,获得积分10
3秒前
月明一完成签到,获得积分10
3秒前
4秒前
乐观夏岚完成签到,获得积分20
4秒前
刻苦傲安完成签到,获得积分10
4秒前
芒果不忙完成签到,获得积分10
5秒前
风未见的曾经完成签到,获得积分10
5秒前
斯文败类应助shenqi采纳,获得10
6秒前
6秒前
徐伟康完成签到 ,获得积分10
6秒前
6秒前
67发布了新的文献求助10
6秒前
6秒前
LOONG完成签到,获得积分20
7秒前
科研通AI2S应助yxdjzwx采纳,获得10
7秒前
筱诸雄完成签到,获得积分10
9秒前
阿金完成签到,获得积分10
9秒前
Backto1998发布了新的文献求助10
10秒前
10秒前
共享精神应助HM采纳,获得10
11秒前
11秒前
恒温失效发布了新的文献求助10
11秒前
韋晴完成签到,获得积分10
11秒前
12秒前
西柚完成签到,获得积分0
12秒前
无赖真菌完成签到,获得积分10
12秒前
12秒前
红萌馆管家完成签到,获得积分10
12秒前
单纯的又菱完成签到,获得积分10
12秒前
重要的小丸子完成签到,获得积分10
12秒前
圈圈完成签到,获得积分10
13秒前
15秒前
听雨眠完成签到,获得积分10
15秒前
Backto1998完成签到,获得积分10
15秒前
高大从丹完成签到,获得积分10
15秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255