亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation

体素 计算机科学 分割 人工智能 地图集(解剖学) 模式识别(心理学) 图形 机器学习 理论计算机科学 生物 古生物学
作者
Christos G. Chadoulos,Dimitrios Tsaopoulos,Serafeim Moustakidis,Nikolaos L. Tsakiridis,John B. Theocharis
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107208-107208 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107208
摘要

Multi-atlas based segmentation techniques, which rely on an atlas library comprised of training images labeled by an expert, have proven their effectiveness in multiple automatic segmentation applications. However, the usage of exhaustive patch libraries combined with the voxel-wise labeling incur a large computational cost in terms of memory requirements and execution times.To confront this shortcoming, we propose a novel two-stage multi-atlas approach designed under the Semi-Supervised Learning (SSL) framework. The main properties of our method are as follows: First, instead of the voxel-wise labeling approach, the labeling of target voxels is accomplished here by exploiting the spectral content of globally sampled datasets from the target image, along with their spatially correspondent data collected from the atlases. Following SSL, voxels classification is boosted by incorporating unlabeled data from the target image, in addition to the labeled ones from atlas library. Our scheme integrates constructively fruitful concepts, including sparse reconstructions of voxels from linear neighborhoods, HOG feature descriptors of patches/regions, and label propagation via sparse graph constructions. Segmentation of the target image is carried out in two stages: stage-1 focuses on the sampling and labeling of global data, while stage-2 undertakes the above tasks for the out-of-sample data. Finally, we propose different graph-based methods for the labeling of global data, while these methods are extended to deal with the out-of-sample voxels.A thorough experimental investigation is conducted on 76 subjects provided by the publicly accessible Osteoarthritis Initiative (OAI) repository. Comparative results and statistical analysis demonstrate that the suggested methodology exhibits superior segmentation performance compared to the existing patch-based methods, across all evaluation metrics (DSC:88.89%, Precision: 89.86%, Recall: 88.12%), while at the same time it requires a considerably reduced computational load (>70% reduction on average execution time with respect to other patch-based). In addition, our approach is favorably compared against other non patch-based and deep learning methods in terms of performance accuracy (on the 3-class problem). A final experimentation on a 5-class setting of the problems demonstrates that our approach is capable of achieving performance comparable to existing state-of-the-art knee cartilage segmentation methods (DSC:88.22% and DSC:85.84% for femoral and tibial cartilage respectively).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
9秒前
12秒前
瘦瘦以亦发布了新的文献求助10
15秒前
小马甲应助瘦瘦以亦采纳,获得10
19秒前
30秒前
36秒前
56秒前
小左完成签到,获得积分20
56秒前
57秒前
小左发布了新的文献求助10
1分钟前
1分钟前
ooops完成签到,获得积分10
1分钟前
1分钟前
SUNny完成签到 ,获得积分10
1分钟前
无花果应助瓜兮兮CYY采纳,获得10
1分钟前
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ooops关注了科研通微信公众号
2分钟前
2分钟前
刘言发布了新的文献求助20
2分钟前
儒雅的十八完成签到,获得积分10
2分钟前
瓜兮兮CYY发布了新的文献求助10
2分钟前
kukudou2发布了新的文献求助30
2分钟前
ooops发布了新的文献求助10
2分钟前
顾矜应助杰老爷采纳,获得10
2分钟前
方沅完成签到,获得积分10
2分钟前
2分钟前
刘言完成签到,获得积分20
2分钟前
2分钟前
杰老爷发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
HH发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160