A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation

体素 计算机科学 分割 人工智能 地图集(解剖学) 模式识别(心理学) 图形 机器学习 理论计算机科学 生物 古生物学
作者
Christos G. Chadoulos,Dimitrios Tsaopoulos,Serafeim Moustakidis,Nikolaos L. Tsakiridis,John B. Theocharis
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107208-107208 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107208
摘要

Multi-atlas based segmentation techniques, which rely on an atlas library comprised of training images labeled by an expert, have proven their effectiveness in multiple automatic segmentation applications. However, the usage of exhaustive patch libraries combined with the voxel-wise labeling incur a large computational cost in terms of memory requirements and execution times.To confront this shortcoming, we propose a novel two-stage multi-atlas approach designed under the Semi-Supervised Learning (SSL) framework. The main properties of our method are as follows: First, instead of the voxel-wise labeling approach, the labeling of target voxels is accomplished here by exploiting the spectral content of globally sampled datasets from the target image, along with their spatially correspondent data collected from the atlases. Following SSL, voxels classification is boosted by incorporating unlabeled data from the target image, in addition to the labeled ones from atlas library. Our scheme integrates constructively fruitful concepts, including sparse reconstructions of voxels from linear neighborhoods, HOG feature descriptors of patches/regions, and label propagation via sparse graph constructions. Segmentation of the target image is carried out in two stages: stage-1 focuses on the sampling and labeling of global data, while stage-2 undertakes the above tasks for the out-of-sample data. Finally, we propose different graph-based methods for the labeling of global data, while these methods are extended to deal with the out-of-sample voxels.A thorough experimental investigation is conducted on 76 subjects provided by the publicly accessible Osteoarthritis Initiative (OAI) repository. Comparative results and statistical analysis demonstrate that the suggested methodology exhibits superior segmentation performance compared to the existing patch-based methods, across all evaluation metrics (DSC:88.89%, Precision: 89.86%, Recall: 88.12%), while at the same time it requires a considerably reduced computational load (>70% reduction on average execution time with respect to other patch-based). In addition, our approach is favorably compared against other non patch-based and deep learning methods in terms of performance accuracy (on the 3-class problem). A final experimentation on a 5-class setting of the problems demonstrates that our approach is capable of achieving performance comparable to existing state-of-the-art knee cartilage segmentation methods (DSC:88.22% and DSC:85.84% for femoral and tibial cartilage respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微微完成签到,获得积分10
刚刚
NexusExplorer应助HUHA1123采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Yziii应助科研通管家采纳,获得20
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
陈谷子完成签到,获得积分10
2秒前
Yziii应助科研通管家采纳,获得20
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
Emma完成签到,获得积分10
2秒前
Yziii应助科研通管家采纳,获得20
2秒前
Tonnyjing应助科研通管家采纳,获得10
2秒前
毛豆应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得100
3秒前
zxcvbnm发布了新的文献求助10
3秒前
Cassie应助科研通管家采纳,获得10
3秒前
4秒前
luna发布了新的文献求助10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
huihuihui完成签到,获得积分10
4秒前
5秒前
Lucas应助卡尔喵克思采纳,获得10
7秒前
小马甲应助zlx采纳,获得10
7秒前
yxl01yxl完成签到,获得积分10
7秒前
感动梦寒完成签到,获得积分10
7秒前
7秒前
wealan发布了新的文献求助10
8秒前
科研通AI2S应助lxjp采纳,获得10
8秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975