A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation

体素 计算机科学 分割 人工智能 地图集(解剖学) 模式识别(心理学) 图形 机器学习 理论计算机科学 生物 古生物学
作者
Christos G. Chadoulos,Dimitrios Tsaopoulos,Serafeim Moustakidis,Nikolaos L. Tsakiridis,John B. Theocharis
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107208-107208 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107208
摘要

Multi-atlas based segmentation techniques, which rely on an atlas library comprised of training images labeled by an expert, have proven their effectiveness in multiple automatic segmentation applications. However, the usage of exhaustive patch libraries combined with the voxel-wise labeling incur a large computational cost in terms of memory requirements and execution times.To confront this shortcoming, we propose a novel two-stage multi-atlas approach designed under the Semi-Supervised Learning (SSL) framework. The main properties of our method are as follows: First, instead of the voxel-wise labeling approach, the labeling of target voxels is accomplished here by exploiting the spectral content of globally sampled datasets from the target image, along with their spatially correspondent data collected from the atlases. Following SSL, voxels classification is boosted by incorporating unlabeled data from the target image, in addition to the labeled ones from atlas library. Our scheme integrates constructively fruitful concepts, including sparse reconstructions of voxels from linear neighborhoods, HOG feature descriptors of patches/regions, and label propagation via sparse graph constructions. Segmentation of the target image is carried out in two stages: stage-1 focuses on the sampling and labeling of global data, while stage-2 undertakes the above tasks for the out-of-sample data. Finally, we propose different graph-based methods for the labeling of global data, while these methods are extended to deal with the out-of-sample voxels.A thorough experimental investigation is conducted on 76 subjects provided by the publicly accessible Osteoarthritis Initiative (OAI) repository. Comparative results and statistical analysis demonstrate that the suggested methodology exhibits superior segmentation performance compared to the existing patch-based methods, across all evaluation metrics (DSC:88.89%, Precision: 89.86%, Recall: 88.12%), while at the same time it requires a considerably reduced computational load (>70% reduction on average execution time with respect to other patch-based). In addition, our approach is favorably compared against other non patch-based and deep learning methods in terms of performance accuracy (on the 3-class problem). A final experimentation on a 5-class setting of the problems demonstrates that our approach is capable of achieving performance comparable to existing state-of-the-art knee cartilage segmentation methods (DSC:88.22% and DSC:85.84% for femoral and tibial cartilage respectively).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho应助njebcuiebvjc采纳,获得10
2秒前
2秒前
2秒前
3秒前
雨山发布了新的文献求助10
3秒前
3秒前
谢老板发布了新的文献求助10
4秒前
4秒前
威武雅容发布了新的文献求助10
5秒前
6秒前
liam发布了新的文献求助10
7秒前
7秒前
8秒前
虚心谷梦发布了新的文献求助10
8秒前
8秒前
8秒前
林睿易完成签到,获得积分20
9秒前
10秒前
chiynn发布了新的文献求助10
11秒前
11秒前
11秒前
能干雁凡发布了新的文献求助10
12秒前
wrr完成签到,获得积分0
12秒前
Lucas应助33采纳,获得10
12秒前
zc完成签到,获得积分10
13秒前
13秒前
虚心谷梦完成签到,获得积分10
14秒前
隐形曼青应助早点下班采纳,获得10
14秒前
14秒前
谢老板完成签到,获得积分10
14秒前
闪闪天晴发布了新的文献求助50
15秒前
15秒前
16秒前
小蘑菇应助孙一涵采纳,获得10
16秒前
16秒前
希望天下0贩的0应助阿玖采纳,获得10
16秒前
YZMING完成签到,获得积分10
17秒前
木一完成签到,获得积分10
18秒前
美丽嚓茶完成签到,获得积分10
18秒前
威武雅容完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487