A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation

体素 计算机科学 分割 人工智能 地图集(解剖学) 模式识别(心理学) 图形 机器学习 理论计算机科学 生物 古生物学
作者
Christos G. Chadoulos,Dimitrios Tsaopoulos,Serafeim Moustakidis,Nikolaos L. Tsakiridis,John B. Theocharis
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107208-107208 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107208
摘要

Multi-atlas based segmentation techniques, which rely on an atlas library comprised of training images labeled by an expert, have proven their effectiveness in multiple automatic segmentation applications. However, the usage of exhaustive patch libraries combined with the voxel-wise labeling incur a large computational cost in terms of memory requirements and execution times.To confront this shortcoming, we propose a novel two-stage multi-atlas approach designed under the Semi-Supervised Learning (SSL) framework. The main properties of our method are as follows: First, instead of the voxel-wise labeling approach, the labeling of target voxels is accomplished here by exploiting the spectral content of globally sampled datasets from the target image, along with their spatially correspondent data collected from the atlases. Following SSL, voxels classification is boosted by incorporating unlabeled data from the target image, in addition to the labeled ones from atlas library. Our scheme integrates constructively fruitful concepts, including sparse reconstructions of voxels from linear neighborhoods, HOG feature descriptors of patches/regions, and label propagation via sparse graph constructions. Segmentation of the target image is carried out in two stages: stage-1 focuses on the sampling and labeling of global data, while stage-2 undertakes the above tasks for the out-of-sample data. Finally, we propose different graph-based methods for the labeling of global data, while these methods are extended to deal with the out-of-sample voxels.A thorough experimental investigation is conducted on 76 subjects provided by the publicly accessible Osteoarthritis Initiative (OAI) repository. Comparative results and statistical analysis demonstrate that the suggested methodology exhibits superior segmentation performance compared to the existing patch-based methods, across all evaluation metrics (DSC:88.89%, Precision: 89.86%, Recall: 88.12%), while at the same time it requires a considerably reduced computational load (>70% reduction on average execution time with respect to other patch-based). In addition, our approach is favorably compared against other non patch-based and deep learning methods in terms of performance accuracy (on the 3-class problem). A final experimentation on a 5-class setting of the problems demonstrates that our approach is capable of achieving performance comparable to existing state-of-the-art knee cartilage segmentation methods (DSC:88.22% and DSC:85.84% for femoral and tibial cartilage respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
blush完成签到,获得积分10
1秒前
1秒前
CodeCraft应助甜甜谷波采纳,获得10
2秒前
sakris完成签到 ,获得积分10
2秒前
怡然太阳发布了新的文献求助10
2秒前
blush发布了新的文献求助10
5秒前
6秒前
6秒前
桐桐应助甜甜亦丝采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
鱼鱼完成签到 ,获得积分10
9秒前
11秒前
汉堡包应助人间不清醒采纳,获得10
12秒前
香蕉觅云应助林途采纳,获得10
13秒前
coco发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
fifteen应助我们太久没见了采纳,获得10
16秒前
18秒前
kunny完成签到 ,获得积分10
19秒前
20秒前
科研通AI6应助qi采纳,获得30
20秒前
21秒前
尧风完成签到 ,获得积分10
21秒前
21秒前
22秒前
火之高兴完成签到,获得积分10
22秒前
动听千风完成签到,获得积分10
23秒前
快乐小狗发布了新的文献求助10
23秒前
无情颖完成签到 ,获得积分10
24秒前
甜甜亦丝发布了新的文献求助10
25秒前
25秒前
汉堡包应助迷人的山灵采纳,获得10
25秒前
25秒前
bkagyin应助孙勇发采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
林途发布了新的文献求助10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971