Recent advances in modeling and simulation of thermoelectric power generation

热电发电机 多物理 热电效应 机械工程 发电 瞬态(计算机编程) 热电冷却 热电材料 计算机科学 工程类 功率(物理) 有限元法 物理 热力学 结构工程 操作系统
作者
Ding Luo,Zerui Liu,Yuying Yan,Ying Li,Ruochen Wang,Lulu Zhang,Xuelin Yang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:273: 116389-116389 被引量:49
标识
DOI:10.1016/j.enconman.2022.116389
摘要

Thermoelectric power generation is a renewable energy conversion technology that can directly convert heat into electricity. In recent years, a great number of theoretical models have been established to predict and optimize the performance of both thermoelectric generators and thermoelectric generator systems. In this work, a comprehensive review of theoretical models is given with a specific focus on the different modeling approaches and different application scenarios. Firstly, the basic principles of theoretical models of the thermoelectric generator are presented, including the thermal resistance model, thermal-electric numerical model, and analogy model. Then, the theoretical models of the thermoelectric generator system are reviewed in detail, including the thermal resistance-based analytical model, computational fluid dynamics models, and fluid-thermal-electric multiphysics field coupled numerical model. The methods to improve the accuracy of theoretical models are also discussed. Furthermore, the transient thermal-electric numerical model of the thermoelectric generator and the transient fluid-thermal-electric multiphysics field coupled numerical model of the thermoelectric generator system are introduced, which can take into account the dynamic characteristics of the heat source, and may remain a hot research field in the upcoming years. Generally, thermal resistance models can quickly obtain the performance of the thermoelectric generator and thermoelectric generator system under different parameters, but suffer from relatively large errors; while it is the opposite for numerical models. To design a comprehensive thermoelectric generator system for practical application, it is suggested to combine the advantages of different models, to shorten the development time and ensure optimal performance at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰你完成签到,获得积分10
刚刚
四夕完成签到 ,获得积分10
1秒前
1秒前
yaoyinlin发布了新的文献求助10
1秒前
JLHN发布了新的文献求助10
1秒前
1秒前
慕青应助chens627采纳,获得10
3秒前
枫叶冰域发布了新的文献求助10
3秒前
4秒前
小语丝发布了新的文献求助10
4秒前
李健应助南山无梅落采纳,获得10
5秒前
5秒前
5秒前
Dawn13443完成签到,获得积分10
6秒前
丘比特应助高xy采纳,获得10
6秒前
7秒前
7秒前
乐观笑南发布了新的文献求助10
7秒前
剪刀手完成签到 ,获得积分10
8秒前
8秒前
吕凯迪发布了新的文献求助10
8秒前
Nm完成签到,获得积分10
9秒前
深情安青应助yaoyinlin采纳,获得10
9秒前
土土b发布了新的文献求助10
9秒前
万能图书馆应助清脆安南采纳,获得10
10秒前
10秒前
前进四应助研友_85YNe8采纳,获得10
11秒前
12秒前
xtz关闭了xtz文献求助
13秒前
13秒前
kkkkkkkkkkk完成签到,获得积分20
13秒前
11发布了新的文献求助50
15秒前
TONG完成签到,获得积分10
16秒前
16秒前
科研通AI6应助可乐采纳,获得30
17秒前
lb发布了新的文献求助30
17秒前
别来无恙完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027