Recent advances in modeling and simulation of thermoelectric power generation

热电发电机 多物理 热电效应 机械工程 发电 瞬态(计算机编程) 热电冷却 热电材料 计算机科学 工程类 功率(物理) 有限元法 物理 热力学 结构工程 操作系统
作者
Ding Luo,Zerui Liu,Yuying Yan,Ying Li,Ruochen Wang,Lulu Zhang,Xuelin Yang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:273: 116389-116389 被引量:49
标识
DOI:10.1016/j.enconman.2022.116389
摘要

Thermoelectric power generation is a renewable energy conversion technology that can directly convert heat into electricity. In recent years, a great number of theoretical models have been established to predict and optimize the performance of both thermoelectric generators and thermoelectric generator systems. In this work, a comprehensive review of theoretical models is given with a specific focus on the different modeling approaches and different application scenarios. Firstly, the basic principles of theoretical models of the thermoelectric generator are presented, including the thermal resistance model, thermal-electric numerical model, and analogy model. Then, the theoretical models of the thermoelectric generator system are reviewed in detail, including the thermal resistance-based analytical model, computational fluid dynamics models, and fluid-thermal-electric multiphysics field coupled numerical model. The methods to improve the accuracy of theoretical models are also discussed. Furthermore, the transient thermal-electric numerical model of the thermoelectric generator and the transient fluid-thermal-electric multiphysics field coupled numerical model of the thermoelectric generator system are introduced, which can take into account the dynamic characteristics of the heat source, and may remain a hot research field in the upcoming years. Generally, thermal resistance models can quickly obtain the performance of the thermoelectric generator and thermoelectric generator system under different parameters, but suffer from relatively large errors; while it is the opposite for numerical models. To design a comprehensive thermoelectric generator system for practical application, it is suggested to combine the advantages of different models, to shorten the development time and ensure optimal performance at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助orchid采纳,获得10
3秒前
3秒前
陶醉之玉完成签到,获得积分10
4秒前
Maddy完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
bobobo发布了新的文献求助10
5秒前
Enkcy发布了新的文献求助10
5秒前
CGEA完成签到,获得积分10
5秒前
wuyuan完成签到,获得积分10
6秒前
酷波er应助臻灏采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
风驻云停完成签到,获得积分10
8秒前
Ava应助隔壁的邻家小兴采纳,获得10
10秒前
等待的道消完成签到 ,获得积分10
10秒前
无极微光应助过时的访梦采纳,获得20
10秒前
xiaoxie发布了新的文献求助20
11秒前
11秒前
11秒前
呐呐呐发布了新的文献求助10
13秒前
情怀应助carrotyi采纳,获得10
14秒前
千树怜发布了新的文献求助10
16秒前
16秒前
17秒前
orchid发布了新的文献求助10
18秒前
小尚完成签到,获得积分10
18秒前
小小咸鱼完成签到 ,获得积分10
19秒前
summer完成签到,获得积分10
19秒前
19秒前
Frank完成签到,获得积分10
20秒前
Criminology34发布了新的文献求助300
21秒前
嘿嘿应助乾澪怀新采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
happy星发布了新的文献求助10
24秒前
Boro发布了新的文献求助10
24秒前
25秒前
之_ZH完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176