已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A summary of grey forecasting models

变量(数学) 计算机科学 非线性系统 人工智能 机器学习 数据挖掘 数学 量子力学 物理 数学分析
作者
Naiming Xie
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:12 (4): 703-722 被引量:50
标识
DOI:10.1108/gs-06-2022-0066
摘要

Purpose The purpose of this paper is to summarize progress of grey forecasting modelling, explain mechanism of grey forecasting modelling and classify exist grey forecasting models. Design/methodology/approach General modelling process and mechanism of grey forecasting modelling is summarized and classification of grey forecasting models is done according to their differential equation structure. Grey forecasting models with linear structure are divided into continuous single variable grey forecasting models, discrete single variable grey forecasting models, continuous multiple variable grey forecasting models and discrete multiple variable grey forecasting models. The mechanism and traceability of these models are discussed. In addition, grey forecasting models with nonlinear structure, grey forecasting models with grey number sequences and grey forecasting models with multi-input and multi-output variables are further discussed. Findings It is clearly to explain differences between grey forecasting models with other forecasting models. Accumulation generation operation is the main difference between grey forecasting models and other models, and it is helpful to mining system developing law with limited data. A great majority of grey forecasting models are linear structure while grey forecasting models with nonlinear structure should be further studied. Practical implications Mechanism and classification of grey forecasting models are very helpful to combine with suitable real applications. Originality/value The main contributions of this paper are to classify models according to models' structure are linear or nonlinear, to analyse relationships and differences of models in same class and to deconstruct mechanism of grey forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_5Y9Z75完成签到 ,获得积分0
1秒前
快乐芷荷完成签到 ,获得积分10
3秒前
starfish完成签到,获得积分10
3秒前
小蜜蜂发布了新的文献求助10
6秒前
6秒前
7秒前
复杂的夜香完成签到 ,获得积分10
8秒前
缓慢的誉完成签到,获得积分10
8秒前
LALA完成签到,获得积分10
9秒前
9秒前
科研通AI6应助陈彪采纳,获得10
10秒前
Lyw完成签到 ,获得积分10
11秒前
ok完成签到 ,获得积分10
12秒前
楠木木发布了新的文献求助10
12秒前
13秒前
starfish发布了新的文献求助10
13秒前
shhoing应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
何柯应助科研通管家采纳,获得10
14秒前
科研通AI6应助阔达芾采纳,获得30
15秒前
缓慢的誉发布了新的文献求助10
16秒前
怪僻完成签到 ,获得积分10
26秒前
27秒前
小大夫完成签到 ,获得积分10
27秒前
鱼鱼完成签到 ,获得积分10
27秒前
30秒前
Lucas应助LYR采纳,获得10
30秒前
xinasoooo完成签到 ,获得积分10
32秒前
李健的小迷弟应助Karol采纳,获得10
32秒前
妖九笙完成签到 ,获得积分10
34秒前
灵巧的以亦完成签到 ,获得积分10
36秒前
兜兜发布了新的文献求助10
37秒前
爆米花应助闪闪的山水采纳,获得10
38秒前
科研通AI6应助小杨要读博采纳,获得10
39秒前
qzp完成签到 ,获得积分10
40秒前
科目三应助火星上的凝阳采纳,获得10
43秒前
科研通AI6应助Karol采纳,获得10
45秒前
科研通AI6应助jing采纳,获得10
45秒前
上官若男应助MrYYy采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548936
求助须知:如何正确求助?哪些是违规求助? 4634376
关于积分的说明 14634351
捐赠科研通 4575747
什么是DOI,文献DOI怎么找? 2509251
邀请新用户注册赠送积分活动 1485255
关于科研通互助平台的介绍 1456343