A summary of grey forecasting models

变量(数学) 计算机科学 非线性系统 人工智能 机器学习 数据挖掘 数学 量子力学 物理 数学分析
作者
Naiming Xie
出处
期刊:Grey systems [Emerald Publishing Limited]
卷期号:12 (4): 703-722 被引量:30
标识
DOI:10.1108/gs-06-2022-0066
摘要

Purpose The purpose of this paper is to summarize progress of grey forecasting modelling, explain mechanism of grey forecasting modelling and classify exist grey forecasting models. Design/methodology/approach General modelling process and mechanism of grey forecasting modelling is summarized and classification of grey forecasting models is done according to their differential equation structure. Grey forecasting models with linear structure are divided into continuous single variable grey forecasting models, discrete single variable grey forecasting models, continuous multiple variable grey forecasting models and discrete multiple variable grey forecasting models. The mechanism and traceability of these models are discussed. In addition, grey forecasting models with nonlinear structure, grey forecasting models with grey number sequences and grey forecasting models with multi-input and multi-output variables are further discussed. Findings It is clearly to explain differences between grey forecasting models with other forecasting models. Accumulation generation operation is the main difference between grey forecasting models and other models, and it is helpful to mining system developing law with limited data. A great majority of grey forecasting models are linear structure while grey forecasting models with nonlinear structure should be further studied. Practical implications Mechanism and classification of grey forecasting models are very helpful to combine with suitable real applications. Originality/value The main contributions of this paper are to classify models according to models' structure are linear or nonlinear, to analyse relationships and differences of models in same class and to deconstruct mechanism of grey forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绾妤发布了新的文献求助10
刚刚
顾矜应助科研通管家采纳,获得30
刚刚
daisies应助科研通管家采纳,获得20
刚刚
yar应助科研通管家采纳,获得10
刚刚
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
daisies应助科研通管家采纳,获得20
1秒前
情怀应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
squirrelcone完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
深情安青应助坚果采纳,获得10
2秒前
2秒前
赘婿应助5433采纳,获得10
2秒前
李健应助pxy采纳,获得10
3秒前
往返自然发布了新的文献求助10
3秒前
鳗鱼绿蝶发布了新的文献求助10
3秒前
3秒前
QUA应助昵称呢采纳,获得10
3秒前
溪边最好的小树完成签到,获得积分10
4秒前
4秒前
情怀应助昆明官渡酒店采纳,获得10
4秒前
852应助duoduo采纳,获得10
4秒前
香蕉觅云应助柚子采纳,获得10
5秒前
hong完成签到,获得积分10
5秒前
喜悦落雁发布了新的文献求助10
5秒前
5秒前
QUA应助我是大兴采纳,获得10
6秒前
7秒前
龙傲天发布了新的文献求助10
7秒前
可爱的函函应助乌龟娟采纳,获得10
7秒前
wuhoo完成签到,获得积分10
8秒前
smottom应助火星上的大开采纳,获得20
8秒前
faa完成签到,获得积分20
8秒前
8秒前
hinini发布了新的文献求助10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073