A summary of grey forecasting models

变量(数学) 计算机科学 非线性系统 人工智能 机器学习 数据挖掘 数学 量子力学 物理 数学分析
作者
Naiming Xie
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:12 (4): 703-722 被引量:30
标识
DOI:10.1108/gs-06-2022-0066
摘要

Purpose The purpose of this paper is to summarize progress of grey forecasting modelling, explain mechanism of grey forecasting modelling and classify exist grey forecasting models. Design/methodology/approach General modelling process and mechanism of grey forecasting modelling is summarized and classification of grey forecasting models is done according to their differential equation structure. Grey forecasting models with linear structure are divided into continuous single variable grey forecasting models, discrete single variable grey forecasting models, continuous multiple variable grey forecasting models and discrete multiple variable grey forecasting models. The mechanism and traceability of these models are discussed. In addition, grey forecasting models with nonlinear structure, grey forecasting models with grey number sequences and grey forecasting models with multi-input and multi-output variables are further discussed. Findings It is clearly to explain differences between grey forecasting models with other forecasting models. Accumulation generation operation is the main difference between grey forecasting models and other models, and it is helpful to mining system developing law with limited data. A great majority of grey forecasting models are linear structure while grey forecasting models with nonlinear structure should be further studied. Practical implications Mechanism and classification of grey forecasting models are very helpful to combine with suitable real applications. Originality/value The main contributions of this paper are to classify models according to models' structure are linear or nonlinear, to analyse relationships and differences of models in same class and to deconstruct mechanism of grey forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安白发布了新的文献求助10
刚刚
colin完成签到,获得积分10
1秒前
糖糖完成签到,获得积分10
1秒前
2秒前
瓦罐汤完成签到,获得积分10
3秒前
KHCHENLE发布了新的文献求助10
3秒前
su发布了新的文献求助20
3秒前
从容的完成签到 ,获得积分10
3秒前
4秒前
王木木完成签到,获得积分10
5秒前
6秒前
7秒前
可可可发布了新的文献求助10
8秒前
梁婷发布了新的文献求助10
8秒前
网易乐关注了科研通微信公众号
8秒前
Lucas应助scc采纳,获得10
10秒前
李爱国应助俊逸的尔柳采纳,获得10
10秒前
畅快的谷秋完成签到 ,获得积分10
11秒前
11秒前
充电宝应助guo采纳,获得10
12秒前
13秒前
虚心醉柳完成签到,获得积分10
14秒前
鱼遇完成签到,获得积分10
15秒前
15秒前
贪玩访文完成签到,获得积分10
16秒前
KHCHENLE完成签到,获得积分20
17秒前
17秒前
科研通AI2S应助小溜溜采纳,获得10
17秒前
Camelia完成签到,获得积分10
17秒前
思源应助可可可采纳,获得10
17秒前
浅惜应助海猫食堂采纳,获得10
20秒前
20秒前
laohu发布了新的文献求助10
21秒前
21秒前
文静的新筠完成签到,获得积分10
22秒前
22秒前
sweat发布了新的文献求助10
23秒前
西红柿炒番茄应助梁婷采纳,获得10
23秒前
dilli发布了新的文献求助10
24秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809281
关于积分的说明 7881247
捐赠科研通 2467760
什么是DOI,文献DOI怎么找? 1313696
科研通“疑难数据库(出版商)”最低求助积分说明 630498
版权声明 601943