A summary of grey forecasting models

变量(数学) 计算机科学 非线性系统 人工智能 机器学习 数据挖掘 数学 量子力学 物理 数学分析
作者
Naiming Xie
出处
期刊:Grey systems [Emerald Publishing Limited]
卷期号:12 (4): 703-722 被引量:30
标识
DOI:10.1108/gs-06-2022-0066
摘要

Purpose The purpose of this paper is to summarize progress of grey forecasting modelling, explain mechanism of grey forecasting modelling and classify exist grey forecasting models. Design/methodology/approach General modelling process and mechanism of grey forecasting modelling is summarized and classification of grey forecasting models is done according to their differential equation structure. Grey forecasting models with linear structure are divided into continuous single variable grey forecasting models, discrete single variable grey forecasting models, continuous multiple variable grey forecasting models and discrete multiple variable grey forecasting models. The mechanism and traceability of these models are discussed. In addition, grey forecasting models with nonlinear structure, grey forecasting models with grey number sequences and grey forecasting models with multi-input and multi-output variables are further discussed. Findings It is clearly to explain differences between grey forecasting models with other forecasting models. Accumulation generation operation is the main difference between grey forecasting models and other models, and it is helpful to mining system developing law with limited data. A great majority of grey forecasting models are linear structure while grey forecasting models with nonlinear structure should be further studied. Practical implications Mechanism and classification of grey forecasting models are very helpful to combine with suitable real applications. Originality/value The main contributions of this paper are to classify models according to models' structure are linear or nonlinear, to analyse relationships and differences of models in same class and to deconstruct mechanism of grey forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
求求大家了完成签到,获得积分10
1秒前
阳光完成签到,获得积分10
1秒前
Crystal完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
乐乐应助赖道之采纳,获得10
6秒前
6秒前
Sun_Chen完成签到,获得积分10
6秒前
体贴凌柏发布了新的文献求助10
7秒前
成就的笑南完成签到 ,获得积分10
7秒前
8秒前
8秒前
wyw123完成签到,获得积分10
8秒前
求大佬帮助完成签到,获得积分10
8秒前
李健的小迷弟应助zyq采纳,获得10
9秒前
陈隆完成签到,获得积分10
9秒前
哎呀完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
mary完成签到,获得积分10
10秒前
10秒前
朱成豪发布了新的文献求助10
12秒前
deallyxyz应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
比比谁的速度快应助曾珍采纳,获得50
12秒前
12秒前
予修应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
吹雪完成签到,获得积分0
12秒前
美好的尔白完成签到,获得积分10
12秒前
O-M175完成签到,获得积分10
13秒前
Jasper应助hahaha123213123采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029