Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier BV]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚雨兰完成签到,获得积分0
1秒前
一叶知秋完成签到,获得积分10
3秒前
叶123完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Minicoper发布了新的文献求助10
5秒前
背书强完成签到 ,获得积分10
6秒前
淡然以柳完成签到 ,获得积分10
8秒前
dolabmu完成签到 ,获得积分10
11秒前
崔崔完成签到 ,获得积分10
15秒前
SYLH应助xcxc采纳,获得10
16秒前
wp4455777完成签到,获得积分10
17秒前
十一完成签到,获得积分10
17秒前
ru完成签到 ,获得积分10
19秒前
慧木完成签到 ,获得积分10
19秒前
WW完成签到 ,获得积分10
20秒前
小高同学完成签到,获得积分10
21秒前
轻轻1完成签到,获得积分10
24秒前
25秒前
大橙子发布了新的文献求助10
29秒前
iuhgnor完成签到,获得积分10
32秒前
可夫司机完成签到 ,获得积分10
35秒前
yang完成签到,获得积分10
37秒前
一1完成签到 ,获得积分10
39秒前
jiaolulu完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
41秒前
爆米花应助LiZhao采纳,获得10
41秒前
轻轻完成签到,获得积分10
44秒前
Orange应助jiaolulu采纳,获得10
44秒前
xcxc完成签到,获得积分10
46秒前
water应助科研通管家采纳,获得50
46秒前
46秒前
默存完成签到,获得积分10
49秒前
风中的金鱼完成签到 ,获得积分10
51秒前
橙汁完成签到,获得积分10
52秒前
普鲁卡因发布了新的文献求助10
55秒前
cora完成签到 ,获得积分10
1分钟前
徐伟康完成签到 ,获得积分10
1分钟前
Minicoper完成签到,获得积分10
1分钟前
科研通AI5应助普鲁卡因采纳,获得10
1分钟前
111完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022