Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier BV]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jjyy完成签到,获得积分10
2秒前
研友_VZG7GZ应助李联洪采纳,获得10
3秒前
科研通AI5应助鸭子采纳,获得10
3秒前
Hello应助陈洋采纳,获得10
3秒前
4秒前
4秒前
4秒前
mmh完成签到,获得积分10
4秒前
jmn应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
李联洪应助科研通管家采纳,获得30
5秒前
奋斗小松鼠完成签到 ,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得30
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
高茵给高茵的求助进行了留言
6秒前
jasmine给jasmine的求助进行了留言
7秒前
7秒前
雨花花发布了新的文献求助10
7秒前
7秒前
8秒前
aaa完成签到,获得积分20
8秒前
gstaihn发布了新的文献求助10
10秒前
xcgh应助谦让的化蛹采纳,获得10
10秒前
深情安青应助清秀白筠采纳,获得10
10秒前
12秒前
陈嘻嘻发布了新的文献求助10
13秒前
李爱国应助张惠采纳,获得10
13秒前
cy关注了科研通微信公众号
14秒前
changping应助留胡子的沛蓝采纳,获得20
14秒前
Ava应助岁岁采纳,获得10
14秒前
含羞草发布了新的文献求助10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206942
求助须知:如何正确求助?哪些是违规求助? 4385146
关于积分的说明 13655821
捐赠科研通 4243590
什么是DOI,文献DOI怎么找? 2328188
邀请新用户注册赠送积分活动 1325910
关于科研通互助平台的介绍 1278098