已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
debile完成签到,获得积分10
2秒前
carols发布了新的文献求助10
4秒前
领导范儿应助Fluoxetine采纳,获得10
5秒前
7秒前
电量过低完成签到 ,获得积分10
14秒前
14秒前
Sunsets完成签到 ,获得积分10
16秒前
18秒前
打打应助adsdas465采纳,获得10
18秒前
19秒前
YJL完成签到 ,获得积分10
19秒前
hanshishengye完成签到 ,获得积分10
21秒前
Yu发布了新的文献求助10
21秒前
啊啊啊完成签到 ,获得积分10
22秒前
23秒前
ChenWei发布了新的文献求助10
24秒前
刘期岜发布了新的文献求助10
25秒前
今后应助十四采纳,获得10
25秒前
ye完成签到,获得积分10
25秒前
Jayzie完成签到 ,获得积分10
27秒前
28秒前
Fluoxetine发布了新的文献求助10
28秒前
英姑应助胡宛钺采纳,获得10
28秒前
29秒前
34秒前
kendall发布了新的文献求助10
34秒前
晚星完成签到 ,获得积分10
35秒前
39秒前
风华正茂完成签到,获得积分10
39秒前
无花果应助Yu采纳,获得10
40秒前
43秒前
45秒前
50秒前
yurany完成签到 ,获得积分10
51秒前
科目三应助牛油果采纳,获得10
54秒前
wdzgx完成签到,获得积分10
58秒前
zsmj23完成签到 ,获得积分0
59秒前
负责人生发布了新的文献求助10
1分钟前
1分钟前
cyn发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763611
求助须知:如何正确求助?哪些是违规求助? 5543116
关于积分的说明 15405167
捐赠科研通 4899313
什么是DOI,文献DOI怎么找? 2635467
邀请新用户注册赠送积分活动 1583538
关于科研通互助平台的介绍 1538681