Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier BV]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段一帆发布了新的文献求助30
1秒前
wangqinlei完成签到 ,获得积分10
1秒前
fenghp发布了新的文献求助10
2秒前
王馨雨发布了新的文献求助10
2秒前
4秒前
CipherSage应助ccalvintan采纳,获得10
5秒前
5秒前
雪天的阳完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
烟花应助ren采纳,获得10
10秒前
讨厌科研发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
苏卿应助科研通管家采纳,获得30
12秒前
fd163c应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
殷勤的紫槐完成签到,获得积分10
13秒前
风轻青柠发布了新的文献求助10
14秒前
14秒前
机智冬灵完成签到,获得积分10
15秒前
16秒前
为小嗳打伞完成签到 ,获得积分10
18秒前
小木安华发布了新的文献求助10
18秒前
体贴的之卉完成签到,获得积分20
20秒前
大侠完成签到 ,获得积分10
20秒前
spy777应助机智冬灵采纳,获得20
21秒前
晨曦发布了新的文献求助10
21秒前
23秒前
ChatGPT发布了新的文献求助10
24秒前
sc发布了新的文献求助10
28秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174