Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海棠听风发布了新的文献求助10
刚刚
23发布了新的文献求助10
刚刚
xde145完成签到,获得积分10
刚刚
1秒前
shime完成签到,获得积分10
1秒前
费城青年发布了新的文献求助10
1秒前
1秒前
2秒前
SHDeathlock给SHDeathlock的求助进行了留言
3秒前
3秒前
3秒前
马静雨发布了新的文献求助50
4秒前
拼搏起眸发布了新的文献求助10
5秒前
二二二发布了新的文献求助10
5秒前
科目三应助柴火烧叽采纳,获得10
5秒前
啊实打实的卡完成签到,获得积分10
5秒前
orixero应助大智若愚啊采纳,获得10
5秒前
Z.完成签到 ,获得积分10
5秒前
DD发布了新的文献求助10
6秒前
daliu完成签到,获得积分10
6秒前
在水一方应助帅气鹭洋采纳,获得10
6秒前
王玉琴完成签到,获得积分10
7秒前
悦耳寒松完成签到,获得积分10
7秒前
费城青年完成签到,获得积分10
7秒前
晴子发布了新的文献求助20
7秒前
meta完成签到,获得积分10
7秒前
伶俐幻丝发布了新的文献求助10
7秒前
小胡先森完成签到,获得积分10
8秒前
谢安发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
wlj完成签到 ,获得积分10
10秒前
SciGPT应助hohokuz采纳,获得10
10秒前
书立方完成签到 ,获得积分10
11秒前
11秒前
metalmd完成签到,获得积分10
11秒前
研友_08okB8完成签到,获得积分10
12秒前
Zn应助还不如瞎写采纳,获得10
12秒前
迟大猫应助无辜之卉采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794