Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居居应助神勇乐曲采纳,获得10
1秒前
1秒前
2秒前
哈哈哈完成签到 ,获得积分10
4秒前
ran完成签到 ,获得积分10
4秒前
万松发布了新的文献求助10
6秒前
甜蜜滑板发布了新的文献求助10
7秒前
9秒前
书文混四方完成签到 ,获得积分10
10秒前
12秒前
风中早晨发布了新的文献求助10
15秒前
彭于晏应助Dee采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
22秒前
123发布了新的文献求助10
22秒前
23秒前
思源应助聪慧的凝海采纳,获得10
24秒前
渣渣慧完成签到,获得积分10
27秒前
余海川发布了新的文献求助10
28秒前
29秒前
literate完成签到,获得积分10
29秒前
Ari_Kun完成签到 ,获得积分10
31秒前
常尽欢完成签到 ,获得积分10
31秒前
Hai发布了新的文献求助10
35秒前
literate发布了新的文献求助10
36秒前
郭郭郭完成签到 ,获得积分10
37秒前
38秒前
菠萝完成签到 ,获得积分10
40秒前
42秒前
44秒前
45秒前
46秒前
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905