Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier BV]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
柔情公蚂蚁完成签到,获得积分10
1秒前
1秒前
余了完成签到 ,获得积分10
1秒前
lothary发布了新的文献求助80
2秒前
Ajin发布了新的文献求助10
3秒前
布小丁发布了新的文献求助10
4秒前
完美世界应助Sev采纳,获得10
4秒前
科研通AI6应助淡淡一凤采纳,获得10
5秒前
大大大长腿完成签到,获得积分10
6秒前
taotao完成签到,获得积分10
7秒前
Hello完成签到,获得积分10
7秒前
8秒前
8秒前
泡泡发布了新的文献求助10
8秒前
9秒前
锦12138发布了新的文献求助10
10秒前
10秒前
我是老大应助哈哈哈采纳,获得10
10秒前
1351567822应助miemie66采纳,获得80
10秒前
毕晓旋发布了新的文献求助10
12秒前
亚七完成签到,获得积分10
12秒前
johnzsin发布了新的文献求助10
13秒前
Kkkkk发布了新的文献求助10
13秒前
14秒前
余了关注了科研通微信公众号
14秒前
XXXXX发布了新的文献求助30
15秒前
冯志华完成签到,获得积分10
15秒前
刘鸿雁完成签到 ,获得积分10
16秒前
16秒前
脑洞疼应助小白狗采纳,获得20
16秒前
16秒前
17秒前
苦行僧发布了新的文献求助10
17秒前
17秒前
周淡念完成签到,获得积分10
19秒前
orixero应助贪玩的机器猫采纳,获得10
19秒前
桐桐应助winkink采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320977
求助须知:如何正确求助?哪些是违规求助? 4462749
关于积分的说明 13887609
捐赠科研通 4353801
什么是DOI,文献DOI怎么找? 2391340
邀请新用户注册赠送积分活动 1385010
关于科研通互助平台的介绍 1354802