Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques

岩石物理学 芯(光纤) 地质学 测井 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 多孔性 岩土工程 地球物理学 电信
作者
Negin Houshmand,Sebastian D. Goodfellow,Kamran Esmaeili,Juan Carlos Ordóñez Calderón
出处
期刊:Applied computing and geosciences [Elsevier]
卷期号:16: 100104-100104 被引量:23
标识
DOI:10.1016/j.acags.2022.100104
摘要

Rock type classification is one of the most crucial steps of geological and geotechnical core logging. In conventional core logging, rock type classification is subjective and time-consuming. This study aims to automate rock type classification using Machine Learning (ML). About 35 m of core samples from five different rock types obtained from an open pit mine were logged using a Multi-Sensor Core Logging (MSCL) system, along with a core scanner that automatically captured geochemical and petrophysical properties of the samples and 360° images of the core circumference. A train/test split strategy (interval split) was introduced, as it produces more realistic predictions than a random shuffle split. The collected logging data were split into train/test subsets based on the core length intervals. For the automated rock type classification, three approaches were implemented. First, different ML algorithms were used to classify rock types based on their petrophysical (P- and S- wave velocities, Leeb hardness) and geochemical properties (collected using a portable X-Ray Fluorescence analyzer (pXRF)). XGBoost outperformed the other models across all rock types. The second approach classified rock types using core images by applying a pre-trained ResNet-50 on ImageNet. Both classical ML and Convolutional Neural Network (CNN) models have higher accuracy for distinct rock samples than transition and interbedding zones. In the third approach, an expert decision procedure was mimicked by concatenating rock properties (first approach) and five features extracted from images (second approach). The concatenation of images and rock properties improved the F1-score of each approach by 10% and 35%, respectively. The core samples had been annotated with a marker in the field, and the effect of removing marked images from the dataset was investigated. The cleaned images improved the rock type prediction by up to 16% (F1-score) using the CNN approach. However, the improvement in the concatenation approach (7%) was not significant enough to justify the labor-intensive cleaning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
远志发布了新的文献求助10
2秒前
王图图发布了新的文献求助10
3秒前
4秒前
4秒前
槐序二三发布了新的文献求助10
4秒前
ZA发布了新的文献求助10
4秒前
5秒前
大意的小馒头完成签到,获得积分10
6秒前
牛6完成签到,获得积分10
7秒前
酷波er应助Wang采纳,获得10
9秒前
JamesPei应助自信尔竹采纳,获得10
10秒前
QDU发布了新的文献求助10
10秒前
Hilda007发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
科目三应助大意的小馒头采纳,获得10
12秒前
12秒前
TIGun完成签到,获得积分10
12秒前
Daniel发布了新的文献求助10
12秒前
13秒前
珀拉瑞丝应助开心的绮玉采纳,获得10
13秒前
英俊的铭应助笑点低紊采纳,获得10
13秒前
山水之乐发布了新的文献求助20
13秒前
14秒前
李健应助dudu采纳,获得10
14秒前
顾矜应助饭团不吃鱼采纳,获得10
15秒前
皆非完成签到,获得积分10
16秒前
合适孤兰发布了新的文献求助10
17秒前
17秒前
18秒前
zhBian发布了新的文献求助10
19秒前
20秒前
FashionBoy应助王碱采纳,获得10
21秒前
JamesPei应助惠惠采纳,获得10
22秒前
细心的冷雪完成签到,获得积分10
22秒前
小马儿完成签到,获得积分10
23秒前
zhBian完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541