A discriminatively deep fusion approach with improved conditional GAN (im-cGAN) for facial expression recognition

判别式 计算机科学 人工智能 模式识别(心理学) 生成对抗网络 面部表情识别 深度学习 生成语法 融合 特征(语言学) 表达式(计算机科学) 代表(政治) 班级(哲学) 面部表情 面部识别系统 政治 语言学 哲学 程序设计语言 法学 政治学
作者
Zhe Sun,Hehao Zhang,Jiatong Bai,Mingyang Liu,Jun Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:135: 109157-109157 被引量:64
标识
DOI:10.1016/j.patcog.2022.109157
摘要

• A discriminatively deep fusion approach is proposed that based on an improved conditional generative adversarial network (im-cGAN) for facial expression recognition. • The proposed im-cGAN model is able to generate more labelled samples by only using the images with the partial set of action units. • Our approach achieves the discriminative representations by fusing global and local features from the generated images and regional patches. • We designed the D-loss function that succeeds in expanding the inter-class distance and reducing the intra-class distance simultaneously. Considering most deep learning-based methods heavily depend on huge labels, it is still a challenging issue for facial expression recognition to extract discriminative features of training samples with limited labels. Given above, we propose a discriminatively deep fusion (DDF) approach based on an improved conditional generative adversarial network (im-cGAN) to learn abstract representation of facial expressions. First, we employ facial images with action units (AUs) to train the im-cGAN to generate more labeled expression samples. Subsequently, we utilize global features learned by the global-based module and the local features learned by the region-based module to obtain the fused feature representation. Finally, we design the discriminative loss function (D-loss) that expands the inter-class variations while minimizing the intra-class distances to enhance the discrimination of fused features. Experimental results on JAFFE, CK+, Oulu-CASIA, and KDEF datasets demonstrate the proposed approach is superior to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111发布了新的文献求助10
1秒前
mmm发布了新的文献求助10
3秒前
Behappy完成签到 ,获得积分10
5秒前
慕青应助11111采纳,获得10
9秒前
布干维尔岛耐摔王完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
Akim应助hunajx采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
SPARK应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
SPARK应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
20秒前
咚咚咚完成签到 ,获得积分10
21秒前
HHHH发布了新的文献求助10
23秒前
wxyshare应助车访枫采纳,获得10
24秒前
街道办柏阿姨完成签到 ,获得积分10
25秒前
andrew完成签到,获得积分10
28秒前
轻语完成签到 ,获得积分10
28秒前
Lucas应助11111采纳,获得30
30秒前
taster发布了新的文献求助10
32秒前
HHHH完成签到,获得积分10
33秒前
wanci应助mmm采纳,获得10
34秒前
着急的诗兰完成签到,获得积分10
34秒前
bingbing完成签到,获得积分10
35秒前
淅淅发布了新的文献求助10
36秒前
40秒前
刘十六完成签到 ,获得积分10
44秒前
风雨潇湘应助11111采纳,获得10
45秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852198
求助须知:如何正确求助?哪些是违规求助? 6276834
关于积分的说明 15627779
捐赠科研通 4968069
什么是DOI,文献DOI怎么找? 2678890
邀请新用户注册赠送积分活动 1623161
关于科研通互助平台的介绍 1579518