Atomic layer deposition of conductive and semiconductive oxides

原子层沉积 材料科学 纳米技术 导电体 掺杂剂 兴奋剂 透明导电膜 无定形固体 半导体 氧化物 图层(电子) 光电子学 化学 冶金 复合材料 有机化学
作者
Bart Macco,W. M. M. Kessels
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:9 (4) 被引量:31
标识
DOI:10.1063/5.0116732
摘要

Conductive and semiconductive oxides constitute a class of materials of which the electrical conductivity and optical transparency can be modulated through material design (e.g., doping and alloying) and external influences (e.g., gating in a transistor or gas exposure in a gas sensor). These (semi)conductive oxides, often categorized as amorphous oxide semiconductors or transparent conductive oxides, have, therefore, been commonplace in, for example, solar cells and displays, as well as in an increasing variety of other applications including memory, logic, photonics, and sensing. Among the various deposition techniques, the use of atomic layer deposition (ALD) has been gaining in popularity in recent years. Specifically since the early 2000s, many ALD processes for doped and compound conductive metal oxides have been developed. The interest in such oxides prepared by ALD can most likely be attributed to the distinct merits of ALD, such as low-temperature processing, excellent uniformity and conformality, and accurate control over the doping level and composition. Moreover, as device dimensions shrink the need for high-quality, ultrathin materials becomes ever more important. These merits of ALD stem directly from the self-limiting nature of the surface chemistry that drives the ALD growth. On the other hand, the strong role that surface chemistry has in the growth mechanism brings in many intricacies, and detailed understanding of these aspects has been vital for the development of high-quality doped and compound oxides by ALD. Examples of growth effects that can occur during ALD of compound oxides include growth delays, clustering of dopants, and interruption of grain growth by doping. Such effects often need to be accounted for or mitigated, while on the other hand, there are also clear cases where such growth effects can be leveraged to achieve enhanced or new functionality. In this review paper, an overview of the library of ALD processes that has emerged is presented. Available precursor chemistries, dopants as well as achieved film properties—most notably the carrier densities and (field-effect) mobilities of the films—are presented. A selection of important ALD effects that can occur during the deposition of doped and compound conductive oxides is showcased, and their effect on the optical and electrical properties are highlighted. Mitigation and improvement strategies for negative growth effects are presented. This is done through case studies that clearly illustrate these effects, drawing both from literature and from our own recent work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
finye发布了新的文献求助10
1秒前
过期小孩完成签到,获得积分10
2秒前
luoshikun完成签到,获得积分10
2秒前
2秒前
打打应助嘀嘀哒哒采纳,获得10
2秒前
ddffgz发布了新的文献求助10
3秒前
lx发布了新的文献求助10
3秒前
3秒前
隐形曼青应助尹冰露采纳,获得10
3秒前
丘比特应助尹冰露采纳,获得10
3秒前
大个应助尹冰露采纳,获得10
3秒前
打打应助尹冰露采纳,获得10
4秒前
汉堡包应助尹冰露采纳,获得10
4秒前
我是老大应助哔哩哔哩采纳,获得10
4秒前
打打应助尹冰露采纳,获得10
4秒前
英俊的铭应助尹冰露采纳,获得10
4秒前
我是老大应助尹冰露采纳,获得10
4秒前
善学以致用应助尹冰露采纳,获得10
4秒前
luochen完成签到,获得积分10
4秒前
Hello应助尹冰露采纳,获得10
4秒前
dizi完成签到,获得积分10
4秒前
4秒前
liuzhou完成签到,获得积分10
6秒前
敦晓旭完成签到,获得积分10
6秒前
林洛沁发布了新的文献求助10
6秒前
清脆的一手完成签到 ,获得积分10
7秒前
panpan发布了新的文献求助10
7秒前
8秒前
高高小兔子应助健忘鞋垫采纳,获得10
8秒前
青云发布了新的文献求助10
8秒前
NexusExplorer应助勤恳的茗茗采纳,获得20
8秒前
虚心幼翠完成签到,获得积分10
8秒前
积极安珊发布了新的文献求助10
9秒前
丹丹丹发布了新的文献求助10
9秒前
longzhixin发布了新的文献求助20
9秒前
9秒前
10秒前
12秒前
13秒前
chang完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755494
求助须知:如何正确求助?哪些是违规求助? 3298655
关于积分的说明 10106495
捐赠科研通 3013264
什么是DOI,文献DOI怎么找? 1655069
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286