Research of Passenger Flow Forecast of Urban Rail Transit Based on Data Mining

城市轨道交通 人工神经网络 时间序列 计算机科学 自相关 数据挖掘 工程类 运筹学 运输工程 统计 人工智能 机器学习 数学
作者
Jinbing Ha,Weidong Chen
标识
DOI:10.54097/hset.v16i.2552
摘要

With the development of China's economy and society, urban construction is constantly improving, urban rail transit is becoming more mature, and people's demand for travel quality is getting higher and higher. However, the imperfect operation and management leads to the contradiction between supply and demand of urban rail transit. Passenger flow data of rail transit is the basis of operation scheduling, and accurate prediction can effectively improve the utilization rate of operating energy. In this paper, through data mining of passenger flow data, the law of passenger flow in time dimension is analyzed, and three different forecasting models are established for rail transit passenger flow data. Finally, the forecasting effects of each model are compared. The characteristics of passenger flow are analyzed in the time dimension, which shows the different changing rules of passenger flow on working days and rest days. In the discussion of the three forecasting methods, firstly, the time series forecasting method is realized by SPSS software, and the final model parameters are determined by unit root test, autocorrelation analysis, partial autocorrelation analysis and Bayesian information criterion. After that, the regression prediction model of support vector machine and BP neural network model are established by MATLAB. The former maps nonlinear passenger flow data into high-dimensional space to find linear relationship for prediction, while the latter realizes passenger flow prediction by establishing neural network model. Finally, by comparing the three prediction models, the results show that the average absolute error of BP neural network prediction method is 13%, which is 44% and 10% lower than that of time series method and support vector machine method, respectively, with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子完成签到,获得积分20
刚刚
正直的雨泽完成签到,获得积分10
1秒前
夜阑风静完成签到,获得积分10
1秒前
ChemistryZyh发布了新的文献求助10
2秒前
2秒前
今后应助lh采纳,获得10
3秒前
科研通AI2S应助asac采纳,获得10
3秒前
shijin135发布了新的文献求助30
4秒前
打打应助故意的寒安采纳,获得10
5秒前
北夏暖完成签到,获得积分10
5秒前
jujijuji应助高高采纳,获得10
5秒前
6秒前
fang完成签到,获得积分10
6秒前
xueru完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
ZZY发布了新的文献求助10
9秒前
9秒前
9秒前
acronema完成签到,获得积分10
10秒前
fransiccarey完成签到,获得积分10
10秒前
10秒前
安紊完成签到,获得积分10
11秒前
12秒前
SciGPT应助xixi采纳,获得10
12秒前
yun_hong发布了新的文献求助10
13秒前
13秒前
顺利兰发布了新的文献求助10
13秒前
13秒前
shijin135完成签到,获得积分10
15秒前
久晴完成签到,获得积分10
15秒前
15秒前
36456657应助科研小民工采纳,获得10
16秒前
CDI和LIB发布了新的文献求助10
16秒前
刘唐荣发布了新的文献求助10
16秒前
jansorchen完成签到,获得积分10
16秒前
梁家瑜完成签到,获得积分10
16秒前
糖糖糖唐发布了新的文献求助10
18秒前
英姑应助青梅憔悴采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522849
求助须知:如何正确求助?哪些是违规求助? 3103786
关于积分的说明 9267447
捐赠科研通 2800458
什么是DOI,文献DOI怎么找? 1536934
邀请新用户注册赠送积分活动 715309
科研通“疑难数据库(出版商)”最低求助积分说明 708693