VRKG4Rec: Virtual Relational Knowledge Graph for Recommendation

计算机科学 嵌入 理论计算机科学 知识图 统计关系学习 关系(数据库) 图形 图嵌入 关系数据库 机器学习 人工智能 情报检索 数据挖掘
作者
Lixin Lu,Bang Wang,Zizhuo Zhang,Shenghao Liu,Xu Han
标识
DOI:10.1145/3539597.3570482
摘要

Incorporating knowledge graph as side information has become a new trend in recommendation systems. Recent studies regard items as entities of a knowledge graph and leverage graph neural networks to assist item encoding, yet by considering each relation type independently. However, relation types are often too many and sometimes one relation type involves too few entities. We argue that there may exist some latent relevance among relations in KG. It may not necessary nor effective to consider all relation types for item encoding. In this paper, we propose a VRKG4Rec model (Virtual Relational Knowledge Graphs for Recommendation), which clusters relations with latent relevance to generates virtual relations. Specifically, we first construct virtual relational graphs (VRKGs) by an unsupervised learning scheme. We also design a local weighted smoothing (LWS) mechanism for node encoding on VRKGs, which iteratively updates a node embedding only depending on the node itself and its neighbors, but involve no additional training parameters. LWS mechanism is also employed on a user-item bipartite graph for user representation learning, which utilizes item encodings with virtual relational knowledge to help train user representations. Experiment results on two public datasets validate that our VRKG4Rec model outperforms the state-of-the-art methods. The implementations are available at https://github.com/lulu0913/VRKG4Rec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大方的访波完成签到 ,获得积分10
2秒前
大个应助niuma采纳,获得10
2秒前
ding应助害羞的紫伊采纳,获得10
3秒前
影子发布了新的文献求助10
4秒前
Lucas应助高大的易蓉采纳,获得10
4秒前
4秒前
艾格尔的小提琴完成签到 ,获得积分10
4秒前
SciGPT应助困困困死了采纳,获得10
5秒前
情怀应助EthanChan采纳,获得10
5秒前
pipi发布了新的文献求助10
6秒前
6秒前
6秒前
CipherSage应助博修采纳,获得10
6秒前
邢文瑞发布了新的文献求助10
7秒前
我想顺利毕业er完成签到,获得积分20
7秒前
8秒前
8秒前
Goodluck完成签到 ,获得积分10
10秒前
ZWK发布了新的文献求助10
11秒前
11秒前
晶生发布了新的文献求助10
11秒前
穆青发布了新的文献求助30
11秒前
顺利毕业发布了新的文献求助10
12秒前
wdd完成签到 ,获得积分10
12秒前
16秒前
勤劳的寄灵完成签到,获得积分10
18秒前
笑笑发布了新的文献求助10
20秒前
21秒前
21秒前
关你Peace完成签到 ,获得积分10
22秒前
JUST发布了新的文献求助10
22秒前
慕青应助林夕采纳,获得10
22秒前
穆青完成签到,获得积分10
22秒前
22秒前
努力搞科研完成签到,获得积分10
24秒前
25秒前
风鱼完成签到 ,获得积分10
25秒前
雪山飞龙发布了新的文献求助10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577