VRKG4Rec: Virtual Relational Knowledge Graph for Recommendation

计算机科学 嵌入 理论计算机科学 知识图 统计关系学习 关系(数据库) 图形 图嵌入 关系数据库 机器学习 人工智能 情报检索 数据挖掘
作者
Lixin Lu,Bang Wang,Zizhuo Zhang,Shenghao Liu,Xu Han
标识
DOI:10.1145/3539597.3570482
摘要

Incorporating knowledge graph as side information has become a new trend in recommendation systems. Recent studies regard items as entities of a knowledge graph and leverage graph neural networks to assist item encoding, yet by considering each relation type independently. However, relation types are often too many and sometimes one relation type involves too few entities. We argue that there may exist some latent relevance among relations in KG. It may not necessary nor effective to consider all relation types for item encoding. In this paper, we propose a VRKG4Rec model (Virtual Relational Knowledge Graphs for Recommendation), which clusters relations with latent relevance to generates virtual relations. Specifically, we first construct virtual relational graphs (VRKGs) by an unsupervised learning scheme. We also design a local weighted smoothing (LWS) mechanism for node encoding on VRKGs, which iteratively updates a node embedding only depending on the node itself and its neighbors, but involve no additional training parameters. LWS mechanism is also employed on a user-item bipartite graph for user representation learning, which utilizes item encodings with virtual relational knowledge to help train user representations. Experiment results on two public datasets validate that our VRKG4Rec model outperforms the state-of-the-art methods. The implementations are available at https://github.com/lulu0913/VRKG4Rec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助喜洋洋采纳,获得10
刚刚
PANSIXUAN完成签到 ,获得积分10
1秒前
善良香岚发布了新的文献求助10
1秒前
1秒前
huizi完成签到,获得积分20
1秒前
RichardZ完成签到,获得积分10
1秒前
1秒前
左左发布了新的文献求助10
2秒前
执着的怜寒应助哈哈哈haha采纳,获得40
2秒前
Cassie完成签到 ,获得积分10
3秒前
3秒前
雄i完成签到,获得积分10
3秒前
Chenly完成签到,获得积分10
4秒前
科目三应助韭黄采纳,获得10
4秒前
4秒前
轻松笙发布了新的文献求助10
4秒前
6秒前
6秒前
a1oft发布了新的文献求助10
7秒前
觅桃乌龙完成签到,获得积分10
7秒前
8秒前
melodyezi发布了新的文献求助10
9秒前
9秒前
FFFFFFF应助柚子采纳,获得10
9秒前
9℃发布了新的文献求助10
9秒前
MailkMonk发布了新的文献求助10
9秒前
ZQ完成签到,获得积分10
9秒前
9秒前
wcy发布了新的文献求助10
10秒前
10秒前
尹博士完成签到,获得积分10
10秒前
迟大猫应助周士乐采纳,获得10
11秒前
追寻的筝发布了新的文献求助10
11秒前
喜洋洋发布了新的文献求助10
11秒前
NANA完成签到,获得积分10
11秒前
乐乐应助协和_子鱼采纳,获得10
11秒前
淇淇完成签到,获得积分10
12秒前
12秒前
luuuuuing完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759