A YOLOX-based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images

分割 人工智能 计算机科学 深度学习 人工神经网络 模式识别(心理学) 图像分割 对象(语法) 计算机视觉
作者
Yuhuan Lu,Kenli Li,Bin Pu,Ying Tan,Ningbo Zhu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:5
标识
DOI:10.1109/tcbb.2022.3222356
摘要

Echocardiography is an essential procedure for the prenatal examination of the fetus for congenital heart disease (CHD). Accurate segmentation of key anatomical structures in a four-chamber view is an essential step in measuring fetal growth parameters and diagnosing CHD. Currently, most obstetricians perform segmentation tasks manually, but the pixel-level operation is labor-intensive and requires extensive anatomical knowledge and clinical experience. As such, efficiently and accurately detecting structures from real-world fetal ultrasound images is a key challenge. In this paper, we propose a YOLOX-based deep instance segmentation neural network (i.e., IS-YOLOX) for cardiac anatomical structure location and segmentation in fetal ultrasound images. Specifically, we reconstruct a new instance segmentation branch based on a multi-task deep learning framework. We then design a new multi-level non-maximum suppression (NMS) mechanism to further improve the segmentation performance that consists of three levels of selection. Moreover, unlike two-stage instance segmentation approaches, our method does not rely on object detection results. To the best of our knowledge, this is the first study regarding instance segmentation on 13 types of anatomical structures in the fetal four-chamber view. Extensive experiments were carried out on clinical datasets, and the experimental results show that our method outperforms nine competitive baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空蝉完成签到,获得积分10
1秒前
1秒前
杰森王发布了新的文献求助10
2秒前
香蕉觅云应助Juskie采纳,获得10
4秒前
6秒前
白宝箱完成签到,获得积分20
10秒前
李爱国应助读书的时候采纳,获得10
10秒前
ymu发布了新的文献求助10
10秒前
余某人完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
活力翠霜完成签到,获得积分10
13秒前
14秒前
Zoe完成签到,获得积分10
15秒前
希望天下0贩的0应助larsy采纳,获得10
18秒前
19秒前
田様应助科研通管家采纳,获得30
19秒前
CAOHOU应助科研通管家采纳,获得10
19秒前
Bio应助科研通管家采纳,获得30
19秒前
SYLH应助科研通管家采纳,获得20
19秒前
凉凉应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
ED应助科研通管家采纳,获得10
19秒前
凉凉应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
20秒前
Bio应助科研通管家采纳,获得30
20秒前
hy完成签到 ,获得积分10
21秒前
22秒前
茉莉是个饱饱完成签到,获得积分10
24秒前
威武红酒完成签到 ,获得积分10
24秒前
CodeCraft应助吃猫的鱼采纳,获得10
25秒前
26秒前
水木流年完成签到,获得积分20
27秒前
科研通AI2S应助读书的时候采纳,获得10
29秒前
29秒前
无花果应助ymu采纳,获得10
29秒前
vlots应助Litchi采纳,获得30
30秒前
30秒前
培潮大王发布了新的文献求助10
32秒前
xide完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023806
求助须知:如何正确求助?哪些是违规求助? 3563777
关于积分的说明 11343658
捐赠科研通 3295140
什么是DOI,文献DOI怎么找? 1814969
邀请新用户注册赠送积分活动 889599
科研通“疑难数据库(出版商)”最低求助积分说明 813041