Insight to the mechanism of tetracycline removal by ball-milled nanocomposite CeO2/Fe3O4/Biochar: Overlooked degradation behavior

球磨机 吸附 纳米复合材料 生物炭 X射线光电子能谱 催化作用 化学工程 解吸 化学 氧气 电子顺磁共振 核化学 材料科学 冶金 纳米技术 有机化学 热解 工程类 物理 核磁共振
作者
Xiaoxue Yang,Kun Luo,Zhoujie Pi,Peng Shen,Puyu Zhou,Liping He,Xiaoming Li,Qi Yang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:307: 122703-122703 被引量:24
标识
DOI:10.1016/j.seppur.2022.122703
摘要

A novel nanocomposite CeO2/Fe3O4/biochar (BC) was prepared using a straightforward, solvent-free mechanical ball milling method. Comparatively to the material prepared by chemical co-precipitation (77.14 %) and raw BC (33.64 %), CeO2/Fe3O4/BC prepared by ball milling achieved better tetracycline (TC) removal (94.35 %) under the optimal condition (TC concentration 10 mg·L-1, catalyst dose 0.5 g·L-1 and pH 9.01). Ball milling not only reduced the particle size, but also increased the surface area of composite, which was favorable to the adsorption of TC on CeO2/Fe3O4/BC. Meanwhile, the number of oxygen-containing functional groups in as-prepared nanocomposite increased after ball milling, which could serve as the bridge of electron transfer to enhance TC degradation. Dissolved oxygen (DO) was activated by CeO2/Fe3O4/BC to produce reactive oxygen species (ROS) for the TC degradation. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) characterization indicated that the enhanced oxygen activation should be attributed to the presence of Ce4+/Ce3+ and Fe3+/Fe2+ redox pairs and persistent free radicals (PFRs) in CeO2/Fe3O4/BC. Desorption experiments suggested that the adsorption and degradation induced by ball-milled CeO2/Fe3O4/BC were accounted for about 79.8 % and 20.2 % of total TC removal, respectively. This study revealed that the organic pollutants removal by BC-based nanocomposite is not alone contribution of the adsorption and the degradation behavior during this process should be concerned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子发布了新的文献求助10
刚刚
小爱发布了新的文献求助10
刚刚
彭于晏应助科研小小小白采纳,获得10
1秒前
Owen应助寂漉采纳,获得30
1秒前
1秒前
彭于晏应助小熊猫采纳,获得10
2秒前
2秒前
指北针完成签到,获得积分20
2秒前
2秒前
田様应助科研混子采纳,获得10
3秒前
Sid完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
6秒前
FashionBoy应助宋宋采纳,获得10
6秒前
hbj完成签到,获得积分10
6秒前
6秒前
dycdz完成签到,获得积分10
7秒前
情怀应助zzzzz采纳,获得10
7秒前
伊凡完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
慕青应助帅哥采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
旺仔儿童成长牛奶完成签到,获得积分10
9秒前
10秒前
10秒前
Agernon应助LouieHuang采纳,获得10
10秒前
橙子发布了新的文献求助10
11秒前
岁峰柒发布了新的文献求助10
11秒前
落后的静枫完成签到 ,获得积分10
11秒前
12秒前
显隐发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Covalent Organic Frameworks(没有ACS in fous 库的就不要上传了,不要下preview这个给我) 2000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3529150
求助须知:如何正确求助?哪些是违规求助? 3109158
关于积分的说明 9292734
捐赠科研通 2806937
什么是DOI,文献DOI怎么找? 1540744
邀请新用户注册赠送积分活动 717339
科研通“疑难数据库(出版商)”最低求助积分说明 710097