Monitoring green tea fixation quality by intelligent sensors: comparison of image and spectral information

支持向量机 人工智能 计算机科学 自动化 固定(群体遗传学) 模式识别(心理学) 残余物 计算机视觉 工程类 化学 算法 生物化学 机械工程 基因
作者
Yuyu Chen,Huiting Wu,Ying Liu,Yujie Wang,Chengye Lu,Jingming Ning,Yuming Wei,Jingming Ning
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.12350
摘要

Intelligent monitoring of fixation quality is a prerequisite for automated green tea processing. To meet the requirements of intelligent monitoring of fixation quality in large-scale production, fast and non-destructive detection means are urgently needed. Here, smartphone-coupled micro near-infrared spectroscopy and a self-built computer vision system were used to perform rapid detection of the fixation quality in green tea processing lines.Spectral and image information from green tea samples with different fixation degrees were collected at-line by two intelligent monitoring sensors. Competitive adaptive reweighted sampling and correlation analysis were employed to select feature variables from spectral and color information as the target data for modeling, respectively. The developed least squares support vector machine (LS-SVM) model by spectral information and the LS-SVM model by image information achieved the best discriminations of sample fixation degree, with both prediction set accuracies of 100%. Compared to the spectral information, the image information-based support vector regression model performed better in moisture prediction, with a correlation coefficient of prediction of 0.9884 and residual predictive deviation of 6.46.The present study provided a rapid and low-cost means of monitoring fixation quality, and also provided theoretical support and technical guidance for the automation of the green tea fixation process. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
saisai发布了新的文献求助20
4秒前
5秒前
蔡从安发布了新的文献求助10
5秒前
5秒前
脑洞疼应助koi采纳,获得10
6秒前
6秒前
9秒前
10秒前
12秒前
WD发布了新的文献求助10
13秒前
在水一方应助小小超采纳,获得30
13秒前
阿混发布了新的文献求助10
15秒前
欣喜芙完成签到,获得积分10
17秒前
17秒前
小二郎应助liuminghui采纳,获得10
18秒前
科研通AI2S应助蔡从安采纳,获得10
18秒前
精明灵薇发布了新的文献求助10
18秒前
yuankeyi完成签到,获得积分10
18秒前
18秒前
紫菜完成签到,获得积分10
19秒前
20秒前
老实的抽屉应助佳佳采纳,获得50
20秒前
xzh应助飞快的稚晴采纳,获得20
21秒前
小药丸完成签到,获得积分10
21秒前
22秒前
科研通AI2S应助Psychexin采纳,获得30
23秒前
23秒前
23秒前
orixero应助阿混采纳,获得20
24秒前
25秒前
八百标兵完成签到,获得积分10
26秒前
27秒前
will发布了新的文献求助10
27秒前
28秒前
烟花应助东京芝士123采纳,获得10
28秒前
王九八发布了新的文献求助10
29秒前
田様应助研友_VZGvVn采纳,获得10
29秒前
Aoka发布了新的文献求助10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417